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Defining Transcriptional Signatures of Human
Hair Follicle Cell States

Rie Takahashi1,8, Adrienne Grzenda2,8, Thomas F. Allison3,8, Jeffrey Rawnsley4, Samuel J. Balin1,
Shan Sabri5, Kathrin Plath3,5,6 and William E. Lowry1,5,6,7
The epidermis and its appendage, the hair follicle, represent an elegant developmental system in which cells
are replenished with regularity because of controlled proliferation, lineage specification, and terminal differ-
entiation. Although transcriptome data exists for human epidermal and dermal cells, the hair follicle remains
poorly characterized. Through single-cell resolution profiling of the epidermis and anagen hair follicle, we
characterized the anatomical, transcriptional, functional, and pathological profiles of distinct epidermal, hair
follicle, and hair follicleeassociated cell subpopulations including melanocytes, endothelial cells, and immune
cells. We additionally traced the differentiation trajectory of interfollicular and matrix cell progenitors and
explored the association of specific cell subpopulations to known molecular signatures of common skin
conditions. These data simultaneously corroborate prior murine and human studies while offering new insights
into epidermal and hair follicle differentiation and pathogenesis.
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INTRODUCTION
Skin has been the subject of extensive characterization at the
pathological and molecular level in humans and mice for de-
cades (Fuchs, 1998-1999).During that time, numerous cell types
within the epidermis and its appendages, the hair follicle and
sweat glands, have been identified via immunohistochemical
and array-based bulk gene expression analyses in each species.
The characterization of epidermal, dermal, and hair follicle cells
at a single-cell resolutionhas laggedcomparedwithother tissues,
largely owing to limited sample sizes and the limitations of early
single-cell technologies. Previous single-cell transcriptional
methods (e.g., Fluidigm) required labor-intensive manual sorting
of cells for array hybridization or sequencing,which necessitated
significant sample sizes to overcome processing losses for reli-
able downstream application. Newer methods (e.g., Drop-seq
and 10X Genomics), however, employ multiplex barcoding
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and microfluidics that enable the rapid parallel processing of
thousands of cells at a lower cost with significantly improved
sensitivity (Klein and Macosko, 2017; Picelli, 2017; Ziegenhain
et al., 2017).

The first single-cell mapping of murine epidermal and hair
follicle cells yielded 1,422 unique transcriptome profiles,
clustering into 25 unique subpopulations (Acosta et al., 2017;
Joost et al., 2016). These human studies focused primarily on
elucidation of interfollicular epidermal and dermal cell types
and differential transcriptional programs activated by patho-
logical processes such as psoriasis and wound healing
(Cheng et al., 2018; Philippeos et al., 2018). Comparable
characterization of human hair follicle cell types and differ-
entiation states is currently lacking, as profiling of human hair
follicles is difficult because of their relative scarcity within
the skin compared with mice.

In this study, we gained access to follicule-enriched frac-
tions of human skin that were discarded from hair transplant
procedures and subjected them to high-throughput single-
cell RNA (scRNA) procedures to gain single-cell tran-
scriptomes for many of the cells associated with human
follicles. This allowed for the generation of single-cell tran-
scriptomes of numerous cell states within the follicle as well
as epidermal keratinocytes, endothelial cells, mesenchymal
populations, immune cells, and melanocytes. With these
data, cell fate trajectories can be generated, and patterns of
gene expression in skin diseases can be probed to find indi-
vidual cell types that are targets of disease.
RESULTS
Single-cell profiling of follicle-enriched human skin grafts

Prior human single-cell investigations used fractions from
total epidermis, resulting in a high ratio of epidermal to
follicular cells (Cheng et al., 2018). To improve single-cell
resolution of follicular cell types, anagen hair follicles were
obtained from discarded human scalp micrografts collected
for transplantation (Figure 1a). Micrografts are composed of
uthors. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology.
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several hair follicles, and variable amounts of surrounding
tissues, including interfollicular epidermis, dermis, and
sebaceous and/or apocrine glands, among others. Micrografts
were collected from five patients for single-cell analysis and
immunohistochemistry. Anagen phase was confirmed by
hematoxylin and eosinelabeled sections of adjacent graft
samples. Following enzymatic and physical dissociation,
single-cell suspensions underwent fluorescence-activated
cell sorting to remove dead cells and debris. Libraries were
generated and sequenced using the Drop-seq (n ¼ 2) and
commercial 10X Genomics (n ¼ 2) platforms (Klein and
Macosko, 2017; Weisenfeld et al., 2017). The 10X method
identified more transcripts and genes than Drop-seq
(Supplementary Figure S1). Dataset integration was accom-
plishing using the Seurat integration method (Butler et al.,
2018).

Unsupervised clustering and cell-type identification

Unsupervised, graph-based clustering revealed 23 primary
clusters of cells, visualized by t-distributed stochastic
neighbor embedding (TSNE) (Figure 1b). Overlaid t-distrib-
uted stochastic neighbor embedding projections of the Drop-
seq and 10X samples and calculated cell counts from each
technique were compared (Supplementary Figure S1c and d).
Differentially expressed genes (DEGs) between clusters,
expression values of keratin isoforms, and MKI67 expression
were employed to identify the individual subpopulations. The
Gene Expression Deconvolution Interactive Tool additionally
was employed for cell-type identification using the Skin
Signatures database to assess cluster DEGs (Supplementary
Figure S2a) (Swindell et al., 2013).

Hierarchical clustering of significant DEGs (log fold
change > 1, adjusted P-value < 0.01) showed that distinct
transcriptional profiles define each cell type (Figure 1c). Most
of the dataset (49.9%, Figure 1d) consisted of hair follicle
subpopulations present during anagen (e.g., bulge, lower
bulge, outer root sheath, inner root sheath [IRS], matrix,
medulla, cortex, isthmus, and infundibulum), indicative of a
successful enrichment procedure. Note that lower bulge,
matrix, medulla, and cortex are not present in telogen folli-
cles, confirming that the follicles analyzed were indeed in the
anagen stage. Interfollicular epidermal cells constituted the
next most prevalent cell type (39%), and T cells, Langerhans
cells, endothelial cells, apocrine and eccrine gland cells,
melanocytes, and sebocytes were additionally identified
(w11.1%). One cluster appeared to represent mesenchymal
cell types, potentially including dermal papillae, dermal
sheath, smooth muscle, and fibroblasts (Supplementary
Figure S2b and c), but the cell number and the diversity
within this cluster precluded definitive judgement. Highly
differentially expressed keratin and nonkeratin gene expres-
sion profiles are shown in Figure 2aec to demonstrate
specificity of expression. The epidermal transcriptional pro-
files largely reproduced the findings of Cheng et al. (2018).
The full list of identified cell-type makers are presented in
Supplementary Table S1.

Immunostaining to confirm scRNA sequencingeidentified
expression patterns

Melanocyte and Langerhans cell subpopulations were
confirmed by langerin and CD74 labeling, respectively, in
hair follicle sections (Figure 3a). To confirm the utility of
scRNA sequencing analysis in identifying previously unde-
scribed subpopulation markers, we looked for enrichment of
immunostaining with markers such as CXCL14 through im-
munostaining of hair follicle sections alongside known bulge
marker CD200, demonstrating colocalization (Figure 3b).
Gene ontology analysis indicated enrichment of extracellular
matrix protein synthesis associated with the bulge
(Supplementary Figure S3), confirmed by colocalization of
extracellular matrix markers TNC and EFEMP1 (Figure 3b and
lower magnification images in Supplementary Figure S4a).
These three secreted extracellular matrix components were
indeed found at the protein level in the bulge compartment of
the follicle in a pattern suggestive of their secretion. Although
these markers were not completely exclusive to the bulge in
either the RNA sequencing or immunostaining analyses, the
presence of these proteins in the bulge was confirmatory for
the scRNA sequencing procedures.

We additionally analyzed the expression patterns of a
subset of other putative markers identified by cluster differ-
ential gene expression analysis using an independently
derived resource, the Human Tissue Atlas (Uhlén et al.,
2015), demonstrating the particular fidelity of this subset for
hair follicle layers (Figure 3c, Supplementary Figure S4b).
Specifically, DAPL1 was predicted to be expressed in the
cortex and medulla, DCD in the sweat glands, DSC1 in the
IRS, DSG4 in the cortex and medulla, CD74 in Langerhans
cells, ELOVL5 in sebaceous glands, FABP9 in the IRS,
S100A3 in the cuticle, and CD59 in melanocytes.

Lineage trajectory of epidermal and follicular cell
progenitors

To examine the differentiation of the interfollicular epidermis
(IFE), IFE cells were placed in pseudotemporal order
(Figure 4a). Cells deriving from the basal IFE were predicted
from this analysis to differentiate into the spinous and later
granular layers, as would be predicted by decades of research
on both human and murine skin (Figure 4b). Consistent with
what was reported in Cheng et al. (2018), we detected a
mitotically active subset of basal IFE cells that do not follow
the traditional IFE differentiation pattern. As a result, we are
confident in both the data and the methods employed to
generate lineage trajectories. Also, as predicted, progressive
loss of basal markers KRT5, KRT14, and COL17A1 is
observed coincident with a gain of spinous marker KRT10
and granular marker CALML5 expression as differentiation
progresses (Figure 4c). The top genes driving differentiation
are shown in Figure 4d.

Probing for lineage trajectories in the hair follicle, we or-
dered data from the cortex/medulla/matrix, IRS Huxley’s and
Henle’s layers, and outer root sheath companion layer
(Figure 5aed). When placed in pseudotemporal order, the
cortex/medulla/matrix population branches off, terminating
in outer root sheath derived companion layer cells as well as
a further differentiated subset of cells, likely representing hair
shaft medulla and cortex components. Additionally, the cor-
tex/medulla/matrix subpopulation additionally gives rise to
the IRS Huxley’s and Henle’s layers. These data are consistent
with a prior report by Mesler et al. (2017), in which early
matrix progenitors give rise to the companion layer and later
www.jidonline.org 765
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Figure 1. Identification of unique cell types from follicular-enriched scalp grafts by scRNA-seq. (a) Experimental workflow schematic. Grafts were collected from

human scalp, examined microscopically to confirm anagen phase, dissociated, then sorted to remove dead cells and other debris before Drop-seq or 10X scRNA-

seq. (b) t-SNE visualization of clusters generated by unsupervised, graph-based clustering of the integrated dataset. (c) heatmap of DEGs that define individual

subtypes of cells from the analysis (d) (left) Illustration of the primary epidermal and follicular compartments present during telogen identified; (right) depiction of

the layers and cell types found in the bulb of anagen follicle (bulb not present during telogen). (e) Percentage of epidermal, follicular, and other cell types identified.

DEG, differentially expressed gene; FC, fold change; H&E, hematoxylin and eosin; HF, hair follicle; IFE, interfollicular epidermis; IRS, inner root sheath; IRS H/H,

inner root sheath Huxley’s/Henley’s layers; ORS CL, outer root sheath companion layer; ORS SB/S, outer root sheath suprabasal/basal layer; scRNA-seq, single-cell

RNA sequencing; t-SNE, t-distributed stochastic neighbor embedding.
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Figure 2. Cell-type identification and gene expression profiles. (a) Clustered Heatmap of keratin genes differentially expressed at a logFC > 1, adjusted P-value

< 0.01, by cluster. (b) Clustered heatmap of the top cluster-specific markers of each cluster by FC. (c) t-SNE visualization of known and previously undescribed
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matrix progenitors give rise to the IRS and lower hair shaft
components (Mesler et al., 2017).

Cell-type enrichment of pathological signatures

Another potential utility of these datasets is to link disease
states to particular cell types in human skin. Numerous da-
tabases have been generated to describe the gene expression
patterns associated with the onset or progression of skin
diseases. In particular, DermDB2 (http://chlamy.mcdb.ucla.
edu/NewDermDB/NewDermDB.html) provided a deep
resource of data on gene expression patterns induced by
various injuries, skin infections, and cancers. The limitation
of these databases is the fact that the analyses were per-
formed on bulk tissue samples, so information about the ef-
fect on particular cell types is obscured. Here, we probed the
expression of groups of genes associated with various skin
syndromes across our scRNA datasets. As shown in Figure 6,
14 disease or injury states showed distinct patterns of
expression in each of the clusters identified within the scRNA
datasets. Of note, some of the diseases known to be partic-
ularly related to immune responses showed a strong pattern
of regulation in Langerhans and immune and/or T cells
(leprosy, StevenseJohnson Syndrome, and mycosis fun-
goides). As expected, the three cancer expression patterns
were most linked to cell types that have been described
pathologically to be most similar to the indicated cancer type
(IFE granular for squamous cell carcinoma; bulge, outer root
sheath, and matrix for basal cell carcinoma; and melanocytes
for melanoma). These results demonstrate that gene expres-
sion patterns of skin diseases can be linked to particular target
cells through correlational analysis with scRNA sequencing.
DISCUSSION
Our use of follicle-enriched samples permitted single-cell
deconvolution of the transcriptomes of several layers of the
human interfollicular epidermis, infundibulum, and hair fol-
licle, as well as a wide variety of follicle-associated cells
(e.g., immune, glandular, and pigment). Furthermore, we
demonstrated the feasibility of integrated datasets generated
from different technologies while maintaining clear cell-type
resolutions. We utilized a multidimensional identification
and validation strategy, examining known keratin and pro-
liferative markers, ontological enrichment of DEGs, immu-
nohistochemical labeling, and examination of the literature
regarding newly identified but less well-characterized puta-
tive markers. Overall, the strategy proved highly effective in
discerning most of the known hair follicle cell types and
several cell types known to be associated with the follicle
such as immune cells and melanocytes. The physical isola-
tion of the hair follicles still allowed for the capture of cells
from endothelial lineages and sweat gland cells, allowing for
www.jidonline.org 767
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Figure 2. Continued.
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the additional characterization of these important cell types
in the skin.

We used expression of keratins to first establish cell iden-
tities, as this has proven useful in the past. In addition, we
also used an existing database to confirm identities based on
the entire profile of each cell cluster (Supplementary
Figure S2). These identities and cell-type specificity of
expression patterns were confirmed at the protein level using
the immunostaining of follicles in our own lab (Figure 3 and
Supplementary Figure S4) as well as a database of immuno-
staining patterns freely available (Supplementary Figure S4,
Human Protein Atlas).

By performing ontological molecular overrepresentation
analysis on each cell type’s DEGs, we uncovered some
interesting patterns that further confirmed cell identities and
revealed previously undescribed biological pathways
(Supplementary Figure S3). For instance, the epidermal
subpopulations displayed enrichment for genes related to
cell-cell adhesion and epidermal development, as would be
expected for cells from stratified epithelia for whom barrier
formation is a paramount activity; immune cells in the follicle
preps showed enrichment for peptide antigen binding; the
Journal of Investigative Dermatology (2020), Volume 140
dermal sheath and papillae population showed enrichment
for collagen binding and extracellular matrix organization;
and cells of the IRS showed enrichment for genes related to
keratinization. Enrichment profiling of identified cell types for
known skin condition gene expression signatures permitted
identification of previously undescribed epidermal and
follicular constituents of skin pathogenesis. As expected,
hyperactivation of immune response associated with condi-
tions such as leprosy, StevenseJohnson Syndrome, and
mycosis fungoides revealed enrichment of signatures in
Langerhans and T cells. Additionally, the three neoplastic
signatures (squamous cell carcinoma, basal cell carcinoma,
and melanoma) were linked to known pathological identifi-
cation (i.e., epidermis and infundibulum for squamous cell
carcinoma, bulge and lower bulge for basal cell carcinoma,
and melanocytes for melanoma).

The primary limitation of scRNA sequencing is depth of
coverage. Although this study permitted expanded coverage
through integration of Drop-seq and 10X platforms from five
distinct samples, deconvolution of highly related or sparse
tissue populations (e.g., cortex vs. medulla vs. matrix) was
not possible with the current sample size. However, together



Figure 3. Validation of enrichment of gene expression at the protein level. (a) Immunostaining of serial sections of frozen hair follicle samples labeled with

CD74 and Langerin (green) highlight Langerhans cells in the basal interfollicular epidermis (KRT14þ, red). Nuclei labeled with DAPI. Bar ¼ 50 mm. (b)

Immunostaining of serial sections of frozen hair follicle samples labeled with antibodies against CXCL14, TNC, and EFEMP1 (red) compared with canonical

bulge markers CD200 (green) and KRT15 (blue). Nuclei labeled with DAPI. Bar ¼ 50 mm. (c) IHC of the indicated epitopes derived from the Human Tissue Atlas

for markers identified by scRNA-seq as specific to particular cell types. IHC, immunohistochemistry; scRNA-seq, single-cell RNA sequencing.
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these data represent an important advance in the investiga-
tion of hair follicle biology. We anticipate these data will be
borne out by others to supplement a variety of analyses and
comparisons with other datasets to further elucidate critical
components and mechanisms in epidermal and follicular cell
development and differentiation.
METHODS
Sample harvest and preparation

Hair grafts were obtained from patients undergoing hair trans-

plantation. Written informed consent was obtained from each pa-

tient and the study protocol was approved through the Institutional

Review Board (IRB #16-000681-AM-00002). Single-cell suspensions

were generated from the micrografts as previously described

(Ohyama and Vogel, 2006). Briefly, the grafts were flushed with

phosphate buffered saline and incubated in dispase overnight at 4
�C. The following day, the grafts were incubated in the same dispase

solution at 37 �C for 30 minutes. Hair grafts were gently dissociated

with a P1000 pipette and then incubated for 10 minutes in trypsin

0.05% solution diluted with phosphate buffered saline. The grafts

were again gently dissociated with a P1000 pipette and placed back

in 37 �C for 10 minutes. Trypsin was deactivated with 5% fetal

bovine serum. Fibrous tissue and debris were filtered out with a 40-

mm strainer. Single cells were visualized and counted with a he-

mocytometer and washed with phosphate buffered saline. Live cells

were preferentially sorted using a FACS Aria III High-speed Cell

Sorter and submitted for single-cell sequencing.
Journal of Investigative Dermatology (2020), Volume 140
Immunostaining

Hair grafts were embedded in OCT compound, frozen, and

sectioned for immunostaining. Frozen sections were fixed in acetone

and labeled with the following primary antibodies: CD59 (Abcam,

Cambridge, United Kingdom; ab69084, 1:50), Melan A (Santa Cruz

Biotechnology, Dallas, TX; sc-20032, 1:50), CD200 (Bio-Rad, Her-

cules, CA; MCA1960, 1:75), CD74 (Santa Cruz Biotechnology; sc-

6262, 1:50), Keratin 14 (Covance, Princeton, NJ; PRB-155P,

1:500), Keratin 15 (Covance; PCK-153P, 1:500), CXCL14 (Abcam;

ab36622, 1:50), EFEMP1 (Abcam; ab106429, 1:50), and Langerin

(Santa Cruz Biotechnology; sc-271272, 1:50). Samples were imaged

using a Leica TCS SP8 Digital Light Sheet Microscope at the Uni-

versity of California, Los Angeles CNSI Advanced Light Microscopy/

Spectroscopy Shared Resource Facility.

scRNA sequencing

The raw Drop-seq data was processed using the Drop-seq tools

v1.12 pipeline from the McCaroll lab, utilizing the standard pa-

rameters as shown in the documentation (https://github.com/

broadinstitute/Drop-seq/releases/tag/v1.12). In brief, cell and mo-

lecular barcodes were extracted from raw sequencing data based on

bases 1e12 for cell and 13e20 for molecular barcodes while

filtering out reads with poor quality bases (TagBamWi-

thReadSequenceExtended). Subsequently, reads were trimmed to

remove SMART adapter sequences as well as PolyA tails (FilterBAM,

TrimStartingsequence, and PolyATrimmer). HiSat2 was used to align

these filtered reads to the human reference genome, hg38. Aligned

reads were then merged with the unaligned reads to recapture

https://github.com/broadinstitute/Drop-seq/releases/tag/v1.12
https://github.com/broadinstitute/Drop-seq/releases/tag/v1.12
http://chlamy.mcdb.ucla.edu/NewDermDB/NewDermDB.html
http://chlamy.mcdb.ucla.edu/NewDermDB/NewDermDB.html
http://chlamy.mcdb.ucla.edu/NewDermDB/NewDermDB.html
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molecular and cell BAM tags, and reads were tagged with GE if they

overlapped with gene exons (MergeBamAlignment and TagRead-

WithGeneExon). Bead synthesis errors were then corrected and uMIs

merged (DetectBeadSynthesisErrors). Finally, differential gene expres-

sions were generated using standard parameters (DigitalExpression). We

performed all downstream analysis on these differential gene expres-

sions after filtering out cells with fewer than 250 genes. For 10X data,

CellRanger2.2 pipelines were used to generate expression matrices with

all standard parameters. Raw fastq files were processed and aligned to

the human GrCh38 genome, and the CellRanger cell detection algo-

rithm was utilized to determine the numbers of gene expression

microarrays per run. No other parameters were changed.

Computational methods

All analyses were performed in R. Gene expression analysis and cell-

type identification were performed using the Seurat package (Butler

et al., 2018; Satija et al., 2015). Seurat objects were created for each

sample. Only those genes that were expressed in more than five cells

and cells that expressed more than 200 genes were retained (22,000

cells). Cellswith a high proportion (>5%) ofmitochondrial expression

were filtered out, as these typically represent cells damaged during

isolation. Filtering was also performed on the number of detected

transcripts within each sample to eliminate partial cells and doublets,

respectively. Datasets were normalized and scaled according to

default settingswith regression against cell number andmitochondrial

content, following by variable gene expression calculation (FindVar-

iableGenes, x low cutoff ¼ 0.03, x high cutoff ¼ 3, y cutoff ¼ 1). The

union of the top 2,000 variable genes was used to perform canonical

correlation analysis across the different samples and align the sub-

spaces (FindIntegrationAnchors and IntegrateData), followed by in-

tegrated t-distributed stochastic neighbor embedding visualization of

all cells. A total of 5,270 remaining cells were used in the final anal-

ysis. Gene expression markers were calculated for each subpopula-

tion (FindAllMarkers, method ¼ t-test). Average, log-normalized

expression profiles were calculated for each gene using the Aver-

ageExpression function. Gene ontology and pathway enrichment

analyses were executed in clusterProfiler. Heatmaps were generated

with the pheatmappackage. Pseudotime calculationswere performed

in Monocle 2 as previously described using the clusters and DEGs

identified in Seurat using default settings (Qiu et al., 2017). Cell

subpopulations were identified as described in the primary text.

Data availability statement

The scRNA sequencing data are in NIH-GEO (GSE129611). The

averaged data for all cell clusters are available in Supplementary

Table S2. The raw data are available through Figshare: https://
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Supplementary Figure S2. Gene Expression Deconvolution Interactive Tool analysis of gene expression. The tool may be found at: http://webtools.mcdb.ucla.

edu. (a) Enrichment of skin signatures (Swindell et al., 2013), Human Primary Cell Atlas, and ENCODE. (b and c) Heatmap of dermal papillae and dermal

sheath signature genes (provided by Michael Rendl, personal communication) and t-SNE of colocalized expression of two markers for each cell type. IFE,

interfollicular epidermis; IRS, inner root sheath; IRS H/H, inner root sheath Huxley’s/Henley’s layers; MSC, mesenchymal stem cell; NK, natural killer;

ORS B, outer root sheath basal layer; ORS CL, outer root sheath companion layer; ORS SB, outer root sheath suprabasal layer; t-SNE, t-distributed

stochastic neighbor embedding.

R Takahashi et al.
Single Cell Transcriptomics on Human Hair

www.jidonline.org 773.e2

http://webtools.mcdb.ucla.edu
http://webtools.mcdb.ucla.edu
http://www.jidonline.org


actin binding
enzyme inhibitor activity

protein phosphatase inhibitor activity
phosphatase inhibitor activity

core promoter binding
cell adhesion mediator activity

cytokine binding
DNA–binding transcription activator activity, RNA polylmerase II–specific

cadherin binding involved in cell–cell adhesion
cell adhesion molecule binding

structural constituent of cytoskeleton
extracellular matrix structural constituent

collagen binding
heparin binding

glycosaminoglycan binding
fibronectin binding

sulfur compound binding
structural constituent of muscle

structural constituent of epidermis
glutathione transferase activity

peptidase regulator activity
endopeptidase inhibitor activity

protease binding
cysteine–type endopeptidase inhibitor activity

RAGE receptor binding
fatty acid derivative binding

monocarboxylic acid binding
fatty acid binding

protein serine/threonine kinase inhibitor activity
Toll–like receptor binding

S100 protein binding
peptide antigen binding

misfolded protein binding
G–protein alpha–subunit binding

thiol- dependent ubiquitin–specific protease activity
peptide binding

MHC class II protein complex binding
amide binding

MHC protein complex binding
RNA polymerase II proximal promoter sequence–specific DNA binding

proximal promoter sequence–specific DNA binding
E–box binding

phospholipase inhibitor activity
antioxidant activity

cell–cell adhesion mediator activity
extracellular matrix binding

cadherin binding
tubulin binding

nuclear receptor activity
transcription factor activity, direct ligand regulated sequence–specific DNA binding

ion channel binding
cysteine–type endopeptidase regulator activity involved in apoptotic process

coenzyme binding
cofactor binding

carboxy–lyase activity
single-stranded DNA binding

chromatin binding
damaged DNA binding
DNA binding, bending

histone deacetylase binding

GO Molecular functions

inf
un

dib
ulu

m
 (7

1)

low
er

 b
ulg

e 
(1

14
)

IF
E sp

ino
us

 3
 (1

38
)

IF
E g

ra
nu

lar
 (1

80
)

im
m

un
e/

Tce
lls

 (9
4)

en
do

th
eli

al 
(1

73
)

ist
hm

us
 (1

10
)

ORS B
 (4

6)

lan
ge

rh
an

s (
17

0)

bu
lge

 (1
23

)

IF
E sp

ino
us

 1
 (9

4)

ORS S
B (1

07
)

m
es

en
ch

ym
al 

(1
09

)

IR
S H

/H
 (5

0)

se
ba

ce
ou

s/a
po

cr
ine

 (6
4)

ORS C
L 

(1
46

)

IF
E sp

ino
us

 2
 (9

7)

IF
E b

as
al 

2 
(2

9)

m
ela

no
cy

te
s (

19
6)

co
rte

x/m
ed

ull
a/

m
at

rix
 (1

53
)

IF
E m

ito
tic

 (1
54

)

GeneRatio

0.05

0.10

p.adjust

0.01

0.02

0.03

0.04

Supplementary Figure S3. Overrepresentation analysis of GO molecular functions by cluster genes. Significantly differentially expressed genes between

clusters were defined as logFC > 1 and adjusted P-value < 0.05. Only enriched categories with an adjusted P-value <0.05 are shown. Overrepresentation

analysis and visualization performed using ClusterProfiler R package. FC, fold change; GO, Gene Ontology; IFE, interfollicular epidermis; IRS H/H, inner root

sheath Huxley’s/Henley’s layers; MHC, major histocompatibility complex; ORS B, outer root sheath basal layer; ORS CL, outer root sheath companion layer;

ORS SB, outer root sheath suprabasal layer.
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Supplementary Figure S4. Immunohistochemical confirmation of expression of proteins predicted by scRNA-seq. (a-c) Immunofluorescence for the same

markers shown in Figure 3, but at lower magnification (5x). (d) Immunostains were derived from the Human Protein Atlas (Uhlén et al., 2015). scRNA-seq,

single-cell RNA sequencing.
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