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SUMMARY

We performed RNA sequencing on 40,000 cells to
create a high-resolution single-cell gene expres-
sion atlas of developing human cortex, providing
the first single-cell characterization of previously
uncharacterized cell types, including human sub-
plate neurons, comparisons with bulk tissue, and
systematic analyses of technical factors. These
data permit deconvolution of regulatory networks
connecting regulatory elements and transcriptional
drivers to single-cell gene expression programs,
significantly extending our understanding of human
neurogenesis, cortical evolution, and the cellular
basis of neuropsychiatric disease. We tie cell-cycle
progression with early cell fate decisions during
neurogenesis, demonstrating that differentiation
occurs on a transcriptomic continuum; rather than
only expressing a few transcription factors that
drive cell fates, differentiating cells express broad,
mixed cell-type transcriptomes before telophase.
By mapping neuropsychiatric disease genes to
cell types, we implicate dysregulation of specific
cell types in ASD, ID, and epilepsy. We developed
CoDEx, an online portal to facilitate data access
and browsing.
INTRODUCTION

The human cortex is composed of billions of cells estimated to

encompass hundreds or thousands of distinct cell types, each

with unique functions (Silbereis et al., 2016). Groundbreaking

work in mouse revealed the power of single-cell transcriptomics

to provide a framework for understanding the complexity and het-

erogeneity of cell types in the brain (Hrvatin et al., 2018; Loo et al.,

2019; Macosko et al., 2015; Saunders et al., 2018; Shekhar et al.,

2016; Tasic et al., 2016; Zeisel et al., 2018). The availability of high-

quality tissue and advances in single-cell transcriptomic technol-

ogies permit us to catalog the cell-type diversity of the human cor-

tex in a comprehensive and unbiasedmanner (Ecker et al., 2017).

Despite the enormous progress that has been made in charac-

terizing early cortical development (Geschwind and Rakic, 2013;

Lui et al., 2011;Silbereis et al., 2016),manyof themolecularmech-

anisms underpinning the generation, differentiation, and develop-

ment of the diverse types of cells remain largely unknown (Molnár,

2011).Molecular taxonomiesof cortical cell types fromdeveloping

human brains enable us to understand the mechanisms of neuro-

genesis and how the remarkable cellular diversity found in the hu-

man cortex is achieved (Camp et al., 2015; Fan et al., 2018; Liu

et al., 2016; Nowakowski et al., 2017; Pollen et al., 2015; Zhong

et al., 2018). Several studies have takenafirst step in thisdirection,

analyzingseveral hundredora few thousandcells fromdeveloping

human brain (Fan et al., 2018; Liu et al., 2016; Nowakowski et al.,

2017; Pollen et al., 2015; Zhong et al., 2018). Advances in technol-

ogyand throughput (e.g.,Drop-seq;Macoskoetal., 2015) allowus
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to analyze an order of magnitude more cells to complement and

extend these studies, providing adeeper picture of humancortical

development and its perturbation in disease.

RESULTS

A Catalog of Cell Types in Developing Human Neocortex
Identifies Major Cell Types, Progenitor States, and
Subtypes of Excitatory and Inhibitory Cells
Here we use single-cell RNA sequencing (scRNA-seq) to define

cell types and compile cell-type transcriptomes in the devel-

oping human neocortex. We focus on the cortical anlage at

mid-gestation (gestation week [GW] 17 to GW18) (Figure 1A),

because this period contains the major germinal zones and the

developing cortical laminae containing migrating and newly

born neurons, and neurodevelopmental processes occurring

during this epoch are implicated in neuropsychiatric disease

(de la Torre-Ubieta et al., 2016; Gandal et al., 2016). To optimize

detection of distinct cell types, we separated the cortex into the

germinal zones (ventricular zone [VZ] and subventricular zone

[SVZ]) and developing cortex (subplate [SP] and cortical plate

[CP]) before single-cell isolation. Using Drop-seq (Macosko

et al., 2015), we obtained and compared high-quality profiles

for �40,000 cells from human cortex (Figures 1A, S1A, and

S1B; Tables S1, S2, and S3) and a small subset with microfluidic

approaches (Fluidigm) for technical comparisons.

We first applied unbiased clustering based on t-distributed

stochastic neighbor embedding (tSNE; see STAR Methods)

and spectral K nearest-neighbor graph-based clustering (But-

ler et al., 2018), identifying 16 transcriptionally distinct cell

groups. Cell types originated from the expected anatomical

source and clustered by biological cell type, rather than batch

or technical artifacts (Figures 1B–1G, S1C, and S1D). We iden-

tified multiple groups of cells at different stages of neuronal

differentiation and maturation, corresponding to all known

major cell types at this developmental period (Figures 1B–1F

and S1E; Table S4). Clusters contained between 50 and

2,000 cells. The smallest cluster captured, which belonged

to microglia, was composed of �50 cells. Other small clusters

for oligodendrocyte precursors (OPCs), endothelia, and peri-

cytes were composed of 306, 237, and 114 cells, respectively

(Figure 1G; Table S4). Clusters were reproducible and robust,
Figure 1. A Catalog of Cell Types in Developing Human Neocortex
(A) Schematic illustrating experimental design and anatomical dissections. VZ, ven

IZ, intermediate zone; SP, subplate; CPi, inner cortical plate; CPo, outer cortic

excitatory neuron; EN, excitatory neuron; IN, interneuron; O, oligodendrocyte pr

(B) Scatterplot visualization of cells after principal-component analysis and t-distri

annotated by major cell types.

(C) Heatmap of gene expression for each cell. Cells are grouped by Seurat clust

used to hierarchically cluster the Seurat clusters. The top 20 most enriched genes

Seurat clusters in (B).

(D and E) tSNE of cells colored by anatomical source (D), or mean expression of

(F) Heatmap of expression profiles of canonical cell-type marker genes. Cells are

(G) Cluster metrics. Ratio of cells derived from the germinal zone (GZ) or CP. Perce

colors indicate grouping of cells bymajor cell class, e.g., caudal ganglionic eminen

(H) Pseudo-time analysis of cells expected to be part of the neurogenesis-differen

cell. Pseudo-time represents an ordering of cells based upon the inferred traject

(I) Pseudo-time trajectory colored by Seurat clusters.
as ascertained by bootstrapping (Figure S1F). Ordering of cells

by pseudo-time in an unbiased manner using Monocle 2, a

computational method that performs lineage trajectory recon-

struction based on single-cell transcriptomics data (Qiu et al.,

2017; Trapnell et al., 2014), confirmed the predicted develop-

mental trajectory (Figures 1H and 1I). For example, it is

possible to observe the ordered transitions between different

neural progenitor types and maturing glutamatergic neurons,

with radial glia (RG) transitioning to intermediate progenitors

(IPs) and IPs transitioning to newborn migrating neurons

(Figure 1I).

We observed that cell-type detection appears to be more sen-

sitive to the number of cells profiled than the sequencing depth

(Figures S2A–S2D). Furthermore, although each cell profile is an

incomplete representation of that cell type (Lun et al., 2016; Fig-

ures S2E and S2F), pooling transcriptomes within cells of a given

type provides more complete cell-type transcriptome represen-

tations. We iteratively subsampled cells from clusters to empiri-

cally assess the completeness of cell-type signatures with

different sample sizes (Figure S2G). At a depth of 40,000 cells,

we obtain stable transcriptomes representing 3,000–5,000 genes

for most cell types present (Table S4). Comparison of these data

with a method using lower throughput and higher sequencing

depth (FluidigmC1) (Nowakowski et al., 2017; Figure S3) revealed

that the ability to leverage an order of magnitude more cells

yielded more stable mRNA transcript profiles for a given cell

type (Figures S3A–S3C). Integration of our dataset with the

largest previous study (4,000 cells; Nowakowski et al., 2017) us-

ing canonical correlation analysis (Butler et al., 2018) showed

substantial alignment of cells between the two datasets (Figures

S3D and S3E). This is the first direct comparison of different

human fetal single-cell datasets, and it demonstrates the repro-

ducibility of these expression profiles and significantly extends

them by providing more stable gene expression rankings. We

provide these cell-type-specific expression profiles with anno-

tated gene expression ranking confidence measures for each

cell type (Table S4) and a web interface, CoDEx (Cortical Devel-

opment Expression Viewer), for browsing these data (http://

geschwindlab.dgsom.ucla.edu/pages/codexviewer).

Comparison of scRNA-seq datasets to bulk RNA sequencing

(RNA-seq) expression profiles (de la Torre-Ubieta et al., 2018)

showed consistently that gene expression profiles generated
tricular zone; iSVZ, inner subventricular zone; oSVZ, outer subventricular zone;

al plate; RG, radial glia; IP, intermediate progenitor; MN, newborn migrating

ecursor; E, endothelial cell; P, pericyte; M, microglia.

buted stochastic neighbor embedding (tSNE), colored by Seurat clustering and

ering, and the mean expression profile of enriched genes for each cluster was

are shown per cluster with canonical marker genes noted. Color bar matches

groups of canonical marker genes of major cell types (E).

grouped by Seurat clustering. Color bar matches Seurat clusters in (B).

ntage of total cell population. Percentage of cells derived from each donor. Bar

ce (CGE)- andMGE-derived interneurons are both blue.MP, mitotic progenitor.

tiation axis, colored by Monocle state or pseudo-time. Each point represents a

ory, predicting the lineage trajectory.
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using different scRNA-seq methodologies across different

laboratories strongly correlated with bulk RNA-seq gene

expression profiles (Spearman 0.69–0.83) (Figures S4A and

S4B). However, we observed that approximately 400 protein-

coding genes representing longer, brain-enriched, cell adhesion

molecules involved in neuronal development (Figures S4E–S4H)

were consistently under-represented in single-cell datasets

compared with bulk tissue RNA-seq (Figures S4C and S4D).

Overall comparison of expression of canonical cell-type marker

genes showed similar expression levels compared with bulk tis-

sue RNA-seq (Figure S4I), indicating that despite small biases in

gene detection shared across scRNA-seq methods, the relative

frequencies of major cell types were not over- or under-repre-

sented, further demonstrating the robustness of the scRNA-

seq dataset (Figure S4).

We next reasoned we could use the depth of our dataset to

identify cell states and cell subtypes not identified in previous

studies with smaller cell numbers. We performed an additional

round of clustering on each major cell cluster (Figure 2; Table

S5; STAR Methods), which finely resolved maturation states

during neurogenesis and identified multiple cell subtypes not

previously characterized in single-cell datasets in humans: SP

neurons (Figure 2D), distinct subtypes of glutamatergic neurons

(Figure 2D), early parvalbumin (PV) interneurons, and NPY ex-

pressing SST interneurons (Figure 2C). A previous study profiling

�2,300 cells from developing human cortex did not detect PV in-

terneurons and suggested PV interneuronsmay not develop until

after GW26 (Zhong et al., 2018). Here, we find that at mid-gesta-

tion (GW17–GW18), PV interneurons comprise �0.1% of the to-

tal population, underscoring how necessary larger datasets are

to identify rare cell types.

The provenance of human neocortical interneurons has been

disputed (Hansen et al., 2013; Ma et al., 2013; Radonji�c et al.,

2014; Zhong et al., 2018). We observed no clusters of progeni-

tors expressing markers of interneurons and no clusters of inter-

neurons expressing mitotic or progenitor markers (Figure S1E).

In addition, subclustering of interneurons did not identify a cell

population displaying characteristics of interneuron progenitors.

OLIG2 is a marker of both medial ganglionic eminence progeni-

tors and OPCs (Miyoshi et al., 2007). We observed OLIG2+ cells
Figure 2. Subclustering Analysis Identifies Progenitor States and Subt

(A) Diagram of subclustering analysis workflow. An iterative approach was used;

the raw count matrix using Seurat. tSNE is colored by Seurat clustering and ann

(B) Subclustering of progenitors. Progenitors separate by cell type and cell-cycle

(C) Subclustering of interneurons. Interneuron MGE (InMGE) subclusters by mat

interneurons, and does not express SST (Pfeffer et al., 2013). InMGE-6 shows

maturity. All clusters are CALB2+, with differing levels of expression likely reflect

(D) Subclustering of excitatory neurons. Newborn excitatory neurons (ExNs) an

display separation of laminae markers. The excitatory upper-layer-enriched clust

expression of the callosal marker LMO4 (Molyneaux et al., 2007). The deep-layer c

NR4A2 (Hoerder-Suabedissen and Molnár, 2015), ExDp1-0 is enriched for lower

ExDp1-1 and ExDp1-3 are enriched for L4 and upper L5 markers (RORB, FOXP1

Heatmaps of expression profiles by subcluster of groups or individual marker gen

CP. Purple: 100% of cells derive from the CP, 0% GZ; green: 0% of cells derive fr

most enriched genes from the excitatory upper-layer-enriched cluster and the de

subcluster, anatomical source, donor, or gene expression. Gray indicates cells

expression is plotted as a Z score for the population of cells in the plot; therefore,

between subclusters of the same major cell type, but all express the marker at so

higher relative expression than other subclusters of RG). Labels ‘‘mat’’ and ‘‘dif’’
only in the OPC cluster that express other OPC markers but do

not express interneuron marker genes (Figure S1E). Thus, even

with the order-of-magnitude-greater cell depth and increased

ability to detect low-abundance cell types (e.g., 0.1%), we do

not find evidence of a neocortical interneuron progenitor during

mid-gestation in humans.

Cell-Type Enrichment of Transcription Factors
and Co-factors
We next sought to gain insight into cell-type-specific regulatory

programs by comparing transcription factor (TF) expression

across major cell types. We found previously characterized

TFs and co-factors enriched in their corresponding cell types

(Figures 1F and 3A) and multiple TFs and co-factors that have

not been associated with specific neocortical cell types (Fig-

ure 3). These TFs also displayed laminae-specific expression in

a bulk tissue laser-capture micro-dissected (LCM) expression

dataset (Miller et al., 2014) and temporal trajectories similar to

canonical cell-type markers (Figures 3B and S5A).

To validate predictions for these putative novel cell-type

markers, we performed RNA fluorescence in situ hybridization

(FISH), which confirmed laminae-specific expression of each of

the TFs and co-factors tested: ZFHX4 and CARHSP1 in neural

progenitors and CSRP2 in excitatory neurons (Figures 3C–3H).

Of particular interest was ZFHX4, which has been previously

associated with 8q21.11 microdeletion syndrome (Palomares

et al., 2011). Our data localize ZFHX4 specifically to neural pro-

genitors in the developing human neocortex for the first time

(Figures 3A–3E), implicating specific dysregulation of neural pro-

genitors as the mechanism underlying this syndrome.

The TF ST18 appeared to partially cluster with SP markers

(Figures 2D, 4A, and 4B; Hoerder-Suabedissen and Molnár,

2015; Oeschger et al., 2012). We found that SP markers previ-

ously defined in other species were not uniquely expressed in

the SP in another fetal gene expression atlas (Miller et al.,

2014; Figures 4B and 4C). We identified SP-enriched genes in

this cortical laminar atlas (Figure 4C; STAR Methods), which

showed strong overlap with ST18 (Figure 4B). Subclustering

separated deep-layer neurons from the ST18-expressing SP

neurons (Figure 4D). Genes enriched in the SP neuron cluster,
ypes of Excitatory and Inhibitory Cells

cells from each initial cluster were re-processed, clustered, and analyzed from

otated by major cell types.

state.

urity and cell subtype. InMGE-7 displays enrichment of TAC1, a marker of PV

strong enrichment of NPY and SST. Interneuron CGE (InCGE) subclusters by

ing maturity.

d maturing excitatory neurons (ExMs) subcluster by maturity. ExMs begin to

er (ExM-U) shows enrichment of laminae markers for different subclusters and

luster (ExDp1) separates by layer. ExDp1-2 is enriched for the subplate marker

L5 and L6 markers (CRYM, TBR1, and FOXP2) (Molyneaux et al., 2007), and

, and ETV1) (Ferland et al., 2003; Molyneaux et al., 2007).

es (y axis). The laminae bar indicates the percentage of cells derived from the

om the CP, 100% GZ. Upper-layer and deep-layer gene groups are the top 50

ep-layer cluster, respectively. tSNEs of cells are colored by features of interest:

with an undefined transcriptional signature. For heatmaps and tSNE, gene

some cell types display differences in relative expression of cell-type markers

me level (e.g., all RG express markers of RG, but some subclusters of RG have

indicate inferred order of maturation or differentiation, respectively.
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or highly correlated with ST18, display strong SP enrichment in

the cortical laminae dataset, verifying our capture of SP neurons

and identification of many additional SP neuronmarkers (Figures

4E–4H). In addition, we performed RNA FISH to confirm SP-

specific expression of ST18 (Figure 4I). This represents the first

transcriptomic characterization of human SP neurons at single-

cell resolution.

We next reasoned that we could begin to leverage these sin-

gle-cell data to uncover some cellular and molecular mecha-

nisms driving human cortical evolution by determining whether

specific cell types were enriched with genes showing human

specific expression trajectories (hSET) in bulk tissue (Bakken

et al., 2016; see STAR Methods). We observed the strongest

enrichment of hSET genes in outer RG (oRG) and the excit-

atory upper-layer-enriched cluster (Figure S5B). Both of these

cell types represent processes central to both neocortical

expansion (Lui et al., 2011) and elaboration of cortical connectiv-

ity in humans (Fame et al., 2011). Among the approximately

600 genes with oRG-enriched expression, we identified LYN,

a Src tyrosine kinase previously implicated in neuronal polar-

ization and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid (AMPA) signaling (Hayashi et al., 1999; Namba et al.,

2014) that had not been previously associated with this cell

type. We used a fetal LCM atlas (Miller et al., 2014) and RNA

FISH to validate these observations, showing that LYN localized

to the germinal zones and was specifically expressed in the VZ

and outer SVZ (oSVZ) (Figures S5C and S5D).

Mapping of Cell-Type-Specific Gene Regulatory
Networks in the Developing Human Neocortex
To deconvolute the cell-type specificity of regulatory elements,

we leveraged a recently generated map of regulatory elements

active in developing fetal cortex and their putative target genes

(de la Torre-Ubieta et al., 2018) to identify promoters and en-

hancers regulating the expression of genes enriched in cells

defined in this study (STAR Methods; Table S6). Enhancers

associated with specific cell types were characterized by

remarkable consistency in mean enhancer size, number associ-

ated with each gene, and distance to the target gene for each

cell type (Figures 5A–5F). In addition, there was no correlation

between target gene length or GC content and number of asso-

ciated enhancers (Figures 5G and 5H). We extended this map

by computationally reconstructing gene regulatory networks

using the single-cell regulatory network inference and clustering

(SCENIC) pipeline (Aibar et al., 2017; Figure 5I) with empirically

determined regulatory elements (de la Torre-Ubieta et al.,
Figure 3. Cell-Type Enrichment of TFs and Co-factors

(A) Heatmap of expression of TFs, co-factors, and chromatin remodelers enric

grouped by cluster. Red indicates factors previously unknown to be enriched in

(B) Expression of factors of interest in bulk tissue LCM laminae from developing

(C) RNA FISH of fetal cortex probedwith the newly identified cell-enriched TF ZFHX

and EOMES (IP marker). Insets show higher magnification of the VZ and SVZ. Sc

(D) Quantification of normalized fluorescence intensity per layer for each set of p

(E) Quantification of the percentage of PAX6+ or EOMES+ cells co-expressing ZF

(F and G) RNA FISH of fetal cortex probed with the newly identified cell-enriched T

neurons in the CP). Bar graph shows quantification of normalized fluorescence

displayed in barplot. Scale bar, 250 mm (top) or 100 mm (inset).

(H) Schematic of cell-type-specific expression of factors of interest. Color indica
2018), rather than standard promoter annotations. This pro-

duced 124 regulons—each representing a TF, along with a

set of co-expressed and motif-enriched target genes—and

the regulon activity scores for each cell (Table S7). Multiple

TFs previously associated with specific cell types showed en-

riched regulon activity in the expected cell types (Figures 5J

and 5K; Table S7). We also identified TFs with previously

uncharacterized cell-type- or cell-subtype-specific activity,

including NFE2L2 in RG, NHLH1 in post-mitotic IPs, ZNF354C

in excitatory neurons, and BACH2 in maturing excitatory neu-

rons (Figure 5L; Table S7). This represents a first-generation

map of cell-type-specific gene regulatory networks in the devel-

oping human neocortex.

Dissecting the Acquisition of a Neuronal Program
Neurons are generated from the controlled asymmetric division

of neural progenitors, which prompted us to analyze the distinct

transcriptional states of cycling cells during this process (Lui

et al., 2011). Neural progenitors clustered by cell-cycle state in

addition to cell type (Figures 1E, 6A, and S6A–S6C), with about

30% of progenitors cycling, roughly consistent with previous ob-

servations (37%based on immunostaining) (Hansen et al., 2010).

We also observed that many cycling progenitors individually ex-

pressed markers of several distinct major cell types, including

RGs, IPs, and neurons (Figures 6A–6C). Doublets were an insuf-

ficient explanation for the co-expression of distinct cell-type

makers for multiple reasons, including that the number of cells

expressing multiple major cell-type markers is twice the empiri-

cally assessed doublet rate (Table S2; Figure S1B; STAR

Methods) and the highly non-random distribution of the cell

types expressing markers of two cell types (Figure 6C).

Therefore, as an alternative explanation, we hypothesized

that we were identifying an intermediate or transition state:

mitotically active cells in the early stages of neurogenesis,

i.e., RG producing IPs, RG producing neurons, and IPs produc-

ing neurons. Consistent with this hypothesis, mixed marker

cells progressing through different stages of the cell cycle

consistently displayed transcriptomes composed of multiple

major cell types (Figures 6D, S7A and S7B). By S phase,

RG+IP+ and IP+Neuron+ cells more closely resembled

their presumed endpoint cell type: IP and neuron, respectively

(Figures 6D and S7B). The transcriptomic signature of

RG+Neuron+ S phase and G2/M phase cells was closer to

RG, potentially reflecting the greater dissimilarity between RG

and neurons (Figures 6D, S7A, and S7B). In addition, the mixed

marker cells share a high percentage of the endpoint cell-type
hed in RG, excitatory neurons, and deep-layer excitatory neurons. Cells are

the neocortical cell types of interest.

cortex.

4 (neural progenitors in the VZ and SVZ) and knownmarkers PAX6 (RGmarker)

ale bar, 250 mm (left) or 100 mm (inset).

robes (see STAR Methods). Mean ± SE displayed in barplot.

HX4. ZFHX4 is expressed in both RG and IPs. Mean ± SE displayed in barplot.

Fs CARHSP1 (neural progenitors in the VZ and SVZ) and CSRP2 (glutamatergic

intensity per layer for each set of probes (see STAR Methods). Mean ± SE

tes �log10 p value from Fisher’s test.
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signature, but the magnitude of expression of the cell-type-

relevant signature genes is smaller than in cells in the fully

differentiated cell clusters (Figures 6E and S7C–S7F). Mixed

marker cells not in S, G2, or M phase may represent cells start-

ing to cycle and differentiate, consistent with findings in mice

that some RG precursors also express neuronal marker genes

of both deep and superficial layers, representing transcription-

ally primed cells (Zahr et al., 2018). Alternatively, these mixed

marker cells may be newborn cells that retain some transcripts

of the mother cell type, as has been previously suggested in

mice (Zahr et al., 2018; Zhong et al., 2018).

To independently validate the existence of cells in these transi-

tion states, we performed RNA FISH, observing S-phase neural

progenitors in the VZ expressing both PAX6 and STMN2, indi-

cating an induction of a neuronal program in a cell before its

neurogenic division (Figure 6F). Indeed, 8.9% (VZ), 6.7% (inner

SVZ [iSVZ]), and 7.5% (oSVZ) of these cells co-express markers

of RG and neurons (Figure 6G), confirming our scRNA-seq data

(see STAR Methods). We were able to quantify the relative pro-

portions of progenitors undergoing distinct differentiation divi-

sions (Figure 6H), finding thatRGproduce roughly equal numbers

of RG, IPs, and neurons but that IPs produce approximately two

times asmany neuronal progeny as IP progeny. Altogether, these

results indicate that during early neurogenesis (1) cell fate deci-

sions occur before S phase; (2) differentiating parent cells not

only express the few key TFs that drive cell fates but also express

broad, mixed cell-type transcriptomes; and (3) neural cell-type

differentiation occurs on a continuum and involves transcrip-

tomic transitions tied to cell-cycle progression (Figure 6I).

Cellular Determinants of Disease
We next reasoned that we could use this atlas of developing hu-

man brain cell types to identify the developmental stages and

cell types in which mutations causing high risk for neuropsychi-

atric disease act so as to provide a reference for understanding

disease mechanisms and circuits (Figure 7). We first examined

enrichment of high-confidence risk genes for autism spectrum

disorder (ASD), defined by harboring high-risk, likely protein-dis-

rupting mutations (Sanders et al., 2015; Figures 7A, 7D, and

S8A). Most ASD risk genes were expressed in developing gluta-

matergic neurons, both deep and upper layer (Figures 7A and

7D), consistent with previous studies (Amiri et al., 2018; Parik-

shak et al., 2013). However, at the individual gene level, there

is substantial variability, and several genes are expressed in
Figure 4. Characterization of Subplate Neuron Expression Profiles

(A) tSNE colored by Seurat clustering and annotated by major cell types.

(B) tSNE of cells colored by mean expression of groups of marker genes or expr

(C) Expression of SP markers in bulk tissue LCM laminae from developing co

expression of the SP versus the VZ, SVZ, CP, and marginal zone (MZ) and visua

(D) Subclustering of deep-layer excitatory cluster 1. tSNE for the full dataset colo

cluster (right), colored by subclustering, mean expression of groups of marker g

(E–G) Expression of SP cluster-enriched genes (F), ST18 co-expressed genes

developing cortex. Genes are ordered left to right by enrichment or correlation (h

(H) Eigengene of intersected ST18 co-expressed and SP cluster-enriched genes

dicates first and third quartiles; the whiskers extend from the box to the highest or

median. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

(I) RNA FISH of fetal cortex probed with the newly identified subplate-enriched TF

layer for each set of probes (see STAR Methods). Mean ± SE displayed in barplo
inhibitory neurons, as well as excitatory neurons or progenitors

(Figures 7A and S8A). For example, MYT1L and AKAP9 display

pan-neuronal expression, whereas GRIN2B is glutamatergic

subtype specific and ILF2 is expressed in cycling progenitors

(Figures 7A and S8A). In the adult neocortex, expression again

concentrated in glutamatergic neurons, with some genes exhib-

iting more pan-neuronal expression patterns (Figure S8A).

In addition, our expanded atlas of cell types identified several

genes that showed distinct patterns of extra-neuronal expres-

sion, including SLC6A1, which was enriched in pericytes, and

TRIO, SETD5, TCF7L2, and KAT2B, which were enriched in

OPCs (Figures 7A andS8A). For the first time, these data suggest

that cell types involved in maintenance of the blood-brain barrier

and the peri-neural environment may also mediate ASD risk.

Several of these genes are expressed in different cell types in

the adult neocortex, such as SLC6A1 in interneurons, high-

lighting the importance of broader single-cell catalogs (Fig-

ure S8A). Expanding this analysis to high-confidence intellectual

disability (ID) and epilepsy risk genes (Figures 7B–7D, S8B and

S8C) showed that most epilepsy risk genes are expressed in glu-

tamatergic neurons (Figures 7B, 7D, and S8B). ID risk genes

were also enriched in glutamatergic neurons but also showed

enrichment in RG, which was not observed with ASD or epilepsy

(Figures 7C, 7D, and S8C). The impact on early progenitor types

in ID relative to ASD and epilepsy is consistent with the more se-

vere disease phenotype in ID. Although the results for ID were

highly significant, the ID risk gene list is smaller, making the com-

parisons less powered. Altogether, these results demonstrate

cell-type-specific expression of ASD, epilepsy, and ID risk genes

by mid-fetal development and provide a framework for the

cellular and developmental context in which individual ASD, ep-

ilepsy, and ID genes should optimally be studied.

Most neuropsychiatric disease risk loci are found in the non-

coding genome, in which functional interpretation is hampered

by limited knowledge of the genomic location and spatiotemporal

activity of regulatory elements. Leveraging our cell-type-specific

map of regulatory elements active in the human neocortex (Fig-

ure 8A; Table S6; STAR Methods; de la Torre-Ubieta et al.,

2018), we used a partitioned heritability approach based on link-

age disequilibrium (LD) score regression (Finucane et al., 2015)

to identify cell types enriched for variants influencing brain volume

orcognitionorcausing risk forneuropsychiatricdisease.We found

that variants influencing adult intracranial volume (Adams et al.,

2016) were specifically enriched in the regulatory elements of
ession of specific genes.

rtex. SP markers were derived from literature sources (left) or by differential

l confirmation of SP specificity (right).

red by subclustering (left). tSNE of cells belonging to the deep-layer excitatory

enes, or expression of specific genes.

(G), and (E) the intersection of (F) and (G) in bulk tissue LCM laminae from

ighest left). Light blue text indicates previously identified SP markers.

from (E) plotted in bulk tissue LCM laminae from developing cortex. Box in-

lowest value that is within 1.53 interquartile range of the box; and the line is the

ST18. Bar graph shows quantification of normalized fluorescence intensity per

t. Scale bar, 250 mm (left) or 100 mm (inset).
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cycling progenitors (PgS and PgG2M), pinpointing a specific cell

type and state likely associated with neural progenitor expansion

(Figures 8B and 8C). By connecting causal genetic drivers to spe-

cific genes within a specific cell type, this not only identifies puta-

tive cell-type-specificmechanisms involved in cortical expansion,

but also provides support for the radial unit hypothesis of cortical

expansion on the human lineage (Lui et al., 2011; Rakic, 1995).

In contrast, common genetic variants influencing educational

attainment (Edu) (Okbay et al., 2016) were enriched in cycling

neural progenitors, CP glutamatergic neurons, medial gangli-

onic eminence (MGE)-derived interneurons, and intriguingly,

pericytes (Figures 8B and 8C). A less-powered IQ genome-

wide association study (GWAS) (Sniekers et al., 2017) also found

enrichment in maturing CP glutamatergic neurons but not in

other cell types (Figures 8B). Unfortunately, most psychiatric dis-

easeGWAS remain underpowered (n =�46,000 and�34,000 for

ASD and epilepsy, respectively). However, variants causing risk

for schizophrenia (n = �105,000) (Pardiñas et al., 2018) were en-

riched in multiple cell types, including neural progenitors, gluta-

matergic neurons, interneurons, OPCs, and microglia (Figures

8B and 8C). One study, using a partitioned heritability approach,

found enrichment for schizophrenia variants in adult cortical glu-

tamatergic neurons and cortical interneurons, consistent with

bulk tissue analysis (Horváth and Mirnics, 2015), but was unable

to assess enrichment in human fetal cortical cell types, given a

lack of available data (Skene et al., 2018). Our results implicate

neural progenitors, OPCs, and fetal microglia in schizophrenia,

highlighting the importance of generating single-cell resources

from multiple periods and brain regions. Given the complex

etiology and phenotypic diversity of schizophrenia, it may be

expected that multiple cell types are affected. These results

highlight how combining DNA accessibility profiling and single-

cell sequencing can facilitate interpretation of the function of

variants influencing brain structure and function.

DISCUSSION

This resource of transcriptomic profiles of 40,000 single cells

in human fetal cortex demonstrates the utility of single-cell

analysis for characterizing human neurogenesis, identifying

novel cell-type regulatory mechanisms, and understanding

the cellular basis of brain phenotypes with neurodevelopmental

origins. By expanding the publicly available number of human
Figure 5. Transcriptional Network Discovery
(A–H) Regulatory elements for cell-type-specific genes. (A) Enhancer size by ce

Density plot of enhancer sizes that are assigned to specific cell types. (C) Distance

(base pairs) from enhancer end to promoter start that are assigned to specific cell

that are assigned to specific cell types. (G) Number of enhancers per gene versus c

per gene versus GC content of the gene by cell type.

(I) Schematic showing the computational approach used for transcriptional netwo

modules between transcription factors and candidate genes are constructed. 2) G

be direct targets of the transcription factor, making a regulon. Direct targets ar

regulatory elements associated with that gene. 3) The activity of each regulon is

(J) Cell-type enrichment of regulon activity. Each regulon was scored as active or

test. Color indicates false discovery rate (FDR)-corrected �log10 p value.

(K) SCENIC regulon activity in each cell (AUCell) for the indicated TF plotted on t

(L) TFs with previously uncharacterized cell-type or cell-subtype-specific activi

expression of the TF plotted on tSNE (bottom panels).
fetal brain single-cell transcriptomes by an order of magnitude,

these data provide a high-resolution map of expression profiles

for all known major cell types from mid-gestation human brains

with more complete cell-type-specific mRNA transcript profiles

than previously available. To facilitate sharing, exploration, and

use of this unique and valuable resource, we developed a

powerful and easy-to-use online browser that allows rapid

queries to ascertain cell-type-specific expression patterns pre-

sented in an intuitive graphical interface. We leverage the

breadth and robustness this high-depth catalog of neocortical

cell types to characterize rare cell types and states, including

PV interneurons, NPY-expressing SST interneurons, and SP

neurons (Fan et al., 2018; Liu et al., 2016; Nowakowski et al.,

2017; Pollen et al., 2015; Zhong et al., 2018). We show that

most markers for SP cells identified in other species are not

specific to SP cells in humans and provide a new cadre of

marker genes for this important cell class that has expanded

substantially on the primate lineage (Hoerder-Suabedissen

and Molnár, 2015).

Some rare cell states identified include transitional forms that

we validate via in situ hybridization. Characterization of these

rare cell states provides novel insight into neurodevelopmental

cell dynamics. Specifically, our data implicate early decision

points in cell fate trajectories that are pre-S phase, leading to

transcriptomically mixed cell states before their division into

two distinct cell types. An early cell fate decision point tied to

cell cycle is consistent with previous work indicating cell fate de-

cisions in neurogenesis are made in G1 (Lange et al., 2009; Pilaz

et al., 2009). However, previous models of asymmetric neuro-

genic divisions suggest that only a few key TFs of the daughter

lineage are expressed in the asymmetrically dividing cell,

whereas we observe early induction of more extensive cell-type

transcriptional programs (Bertrand and Hobert, 2010; Pfeuty,

2015). This is particularly surprising in that cells are expressing

transcriptomes of two distinct cell types before telophase. In

addition, the transition state dynamics during early neurogenesis

show that cell-type differentiation is on a gradual continuum and

involves transcriptomic transitions tied to cell-cycle progression,

rather than off or on expression of a small group of TFs.

We also perform a systematic exploration of the impact of mul-

tiple technical factors, includingcomparisonsacrossmethodsand

to bulk tissue RNA-seq, enabling us to thoroughly evaluate gene

and cell-type detection and coverage. These types of analyses
ll type. Enhancers are assigned to cell types by cell-type-enriched genes. (B)

(base pairs) from enhancer to promoter by cell type. (D) Density plot of distance

types. (E) Enhancers per gene by cell type. (F) Histogram of enhancers per gene

oding sequence (CDS) length of the gene by cell type. (H) Number of enhancers

rk discovery with the SCENIC pipeline (see STAR Methods). 1) Co-expression

enes in co-expressionmodules are then pruned to genes, which are inferred to

e determined by the presence of the transcription factor binding motif in the

then assessed in each cell.

inactive for each cell, and cluster enrichment was then determined by Fisher’s

SNE.

ty. Regulon activity in each cell (AUCell) for the indicated TF (top panels) or
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have not been performed in most published papers to date. By

direct comparison with bulk tissue data, we show that there is a

high level of correspondence between the transcriptomes identi-

fied in both single-cell and bulk tissue data. However, we find

that single-cell transcriptomes miss a small number of certain

genes, biased toward long neuronal-enriched transcripts such as

cell adhesionmolecules, anobservation that has not beennoted in

previous studies (Nowakowski et al., 2017; Pollen et al., 2015;

Zhong et al., 2018). In addition, we evaluate and provide high-con-

fidence cell-type transcriptomes relative to previously published

methods with lower throughput and higher sequencing depth.

Finally, we provide the first direct comparison and integration of

different human fetal brain single-cell datasets, demonstrating

the reproducibility of these methods for identifying cell clusters.

By integrating these data with tissue-specific regulatory infor-

mation, we provide a map of TF gene regulatory networks for

specific cell types in developing human brain. We highlight

how this can be used to identify critical cell types in monogenic

disorders (e.g., ZFHX4 and 8q21.11 deletion), as well as in ASD,

expanding the implicated cell landscape in this disorder to

include inhibitory neurons and, in a few cases, non-neural cells,

in addition to glutamatergic neurons. These results emphasize

the importance of expanding single-cell taxonomies to include

single-cell epigenetic analysis (Luo et al., 2017). Lastly, we

show that genes with human-specific expression patterns act

preferentially in oRG and upper-layer cortical neurons, which is

consistent with the expansion of these zones during brain evolu-

tion. These data provide a molecular context for cortical expan-

sion and increased cortical-cortical connectivity in humans, and

they extend our understanding of developmental dynamics and

the origin of neuropsychiatric disease risk in human neocortex.
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Detailed methods are provided in the online version of this paper
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Figure 6. Dissecting the Acquisition of a Neuronal Program
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highly expressed in RG+IP+ cells than in RG+ cells.
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DAPI (blue). Panels on the right show high-magnification single-plane confocal im

10 mm (right).

(G) Quantification of the percentage of cells co-expressing the S-phasemarker PC

in barplot.

(H) Quantification of relative amounts of mitotic RG and relative amounts of IPs u

(I) Diagram of mixed cell-type transcriptomic states that is characteristic of neu
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Figure 7. Cellular Determinants of Disease

(A–C) Cell-type expression of ASD, epilepsy, or ID risk genes, respectively. Expression of ASD risk genes is enriched in fetal glutamatergic neurons, with some

genes specifically expressed in other cell types. Red: gene is discussed in text. Cells are ordered by cluster.

(D) Cell-type enrichment of ASD, epilepsy, or ID risk genes. Numbers indicate the log2 odds ratio; the red line indicates the FDR-significance threshold (p value 0.05).
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Figure 8. Partitioned Heritability Analysis Demonstrates Enrichment of Heritability in Specific Brain Traits and Neuropsychiatric Diseases in

Diverse Cell Types

(A) Schematic showing the approach to identifying regulatory elements (REs) for specific cell types and assessing enrichment for specific brain traits. REs of

genes enriched in specific cell types are identified by chromatin accessibility correlation between the promoter of the gene and the other accessible peaks within

1 Mb. The set of promoter and distal RE peaks are then tested for enrichment in SNPs associated with brain traits and neuropsychiatric disease using partitioned

heritability by LD score regression.

(B) Heatmap showing significant partitioned heritability enrichment for specific brain traits and neuropsychiatric disorders in different cell populations. Color

indicates the partitioned heritability enrichment. Numbers are the FDR-corrected p values. References for each GWAS are in Table S8. We did not observe

enrichment of irritable bowel syndrome (IBD) or finger whorl variants in the regulatory elements of any cortical-derived cell types, supporting the cell-type

specificity of gene regulation.

(C) For selected GWAS, bar plots indicate the FDR-corrected significance or the enrichment (right) of partitioned heritability. Red vertical line indicates the FDR-

significance threshold (p value 0.05). Error bars represent SE. N, GWAS sample size.
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

LD score regression (v1.0.0) (Finucane et al., 2015) https://github.com/bulik/ldsc RRID: not found

g:Profiler (Reimand et al., 2016) http://biit.cs.ut.ee/gprofiler/ RRID:SCR_006809

MEME (Bailey et al., 2009) http://meme-suite.org/ RRID:SCR_001783
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents should be directed to and will be fulfilled by the Lead Contact, Daniel H. Geschwind

(dhg@mednet.ucla.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Developing human brain tissue samples
De-identified fetal tissue samples were obtained from the UCLA Gene and Cell Therapy Core according to IRB guidelines or from

the University of Maryland Brain and Tissue Bank (RNA FISH). For all donors profiled for single-cell RNA-seq (Drop-seq), DNA

was acquired from fetal brain tissue and donors were genotyped with Illumina HumanOmni2.5 chips. Sex was determined based

on homozygosity in X chromosome SNPs (3 male, 1 female) and expression of XIST and Y chromosome genes. High confidence

CNVs were called with plumbCNV (Cooper et al., 2015). No known major pathogenic CNVs implicated in neuropsychiatric disorders

were found in these donors. The largest CNV called and confirmed visually was 380kb. Samples processed for Drop-seq were ob-

tained from 4 donors [female 17,17,18 gestation weeks (GW); male: 18 GW]. Samples processed for Fluidigm were obtained from 2

donors [female 17, 17.5 GW]. Samples processed for RNA fluorescent in situ hybridization (RNA FISH) were obtained from the UCLA

Gene and Cell Therapy Core or from the University of Maryland Brain and Tissue Bank according to IRB guidelines from five donors

aged GW15.5-18. This study was performed according to the legal and institutional ethical regulations of the UCLA Office of Human

Research Protection. Full informed consent was obtained from all of the parent donors.

METHOD DETAILS

Tissue dissection and single-cell isolation
Coronal sections were prepared from fetal cortices using a razor blade under a dissection microscope in ice-cold Hank’s Balanced

Salt Solution (HBSS). The coronal sections were then further dissected at the intermediate zone (IZ) to divide them into two regions:

1) consisting of the germinal zones (GZ) [ventricular zone (VZ), and subventricular zone (SVZ], and 2) consisting of the developing

cortex (CP) [subplate (SP), cortical plate (CP), andmarginal zone (MZ)]. Themajority of the IZ was included as part of the ‘‘CP’’ dissec-

tion, but there is likely a small amount included in the GZ. Following dissection, GZ and CP sections were separately gently disso-

ciated via enzymatic digestion with papain (Worthington) and filtered into a pure homogeneous cell suspension through dual filtering

with a 40mm strainer followed by an ovomucoid gradient (Worthington). Cell survival (90%–95%) and yield were quantified with

Trypan blue staining, before immediately proceeding with Drop-seq or Fluidigm single-cell isolation. To assess doublet rates by

human-mouse cell mixing experiments, mouse E15 cortical cultures were prepared in parallel. Briefly, mouse corticeswere dissected

in ice-cold HBSS and enzymatically dissociated with trypsin into a homogeneous cell suspension. Survival (90%–95%) and yield

were quantified with Trypan blue staining. Mouse and human cells were mixed in a 1:10 ratio immediately prior to single-cell isolation

by Drop-seq.

Single-cell RNA-seq
Drop-seq was run on single cells according to the online Drop-seq protocol v.3.1 (http://mccarrolllab.com/download/905/) and the

methods published in Macosko et al. (2015). Cells were maintained on ice and diluted to 125,000/mL in PBS + 0.01% BSA immedi-

ately prior to isolation. Barcoded beads were obtained from Chemgenes and cells were isolated in a Polydimethylsiloxane (PDMS)

microfluidics device. Libraries were prepared with the Nextera XT DNA Library Preparation Kit (Illumina) according to the manufac-

turer’s instructions. Libraries were then sequenced to an average of 57,814 reads/cell in an Illumina HiSeq2500 instrument with a

modified 100bp paired-end protocol where R1 = 25bp and R2 = 75bp to maximize mapping. This read depth was empirically deter-

mined to yield the best per cell gene detection versus sequencing depth.

Fluidigm C1 scRNA-seq was run using the Fluidigm low-throughput small IFC (96 cells) or the high-throughput small IFC (800 cells)

according to the manufacturer’s instructions. Libraries were then prepared with the Nextera XT DNA Library Preparation Kit (Illumina)

according to the manufacturer’s instructions and sequenced to an average of 414,411 (high-throughput) and 682,569 (low-

throughput) reads/cell in an Illumina HiSeq2500 instrument with a modified 100bp paired-end protocol where R1 = 25bp and

R2 = 75bp to maximize mapping. The low-throughput libraries were sequenced in an Illumina HiSeq2500 where R1 = 50bp and

R2 = 50bp. The high-throughput libraries were sequenced in an Illumina HiSeq3000 where R1 = 12bp and R2 = 126bp.
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RNA fluorescent in situ hybridization (RNA FISH)
In order to independently validate single-cell expression profiles, we used RNAscope (Wang et al., 2012), an RNA FISH technique

capable of single-molecule RNA detection with minimal off-target signal. Fetal tissue samples were obtained from the UCLA

Gene and Cell Therapy Core or from the University of Maryland Brain and Tissue Bank according to IRB guidelines from five donors

aged GW15.5-18. Developing human cortices were flash-frozen, embedded in OCT and cryosectioned in the coronal plane (15mm

section thickness). Sections were then subjected to RNA FISH following themanufacturer’s protocol for fresh frozen tissues using the

Fluorescent Multiplex Assay Kit v1 (Advanced Cell Diagnostics Cat# 320850) with the following probes: CARHSP1-C1, CSRP2-C2,

CRYAB (Cat# 426271-C2), EOMES (Cat# 429691-C3), LYN-C3, PAX6 (Cat# 588881-C1), PAX6 (Cat# 588881-C2), PCNA (Cat#

553071-C1), SATB2 (Cat# 420981-C1), ST18-C2, STMN2-C3, and ZFHX4-C2.

To determine the expression pattern across cortical layers for cell-enriched TFs (Figures 3C–3G and 4I), tiled images of multiple

coronal sections from three independent donors spanning the entire cortex were acquired using a Leica DMi8 epifluorescence mi-

croscope at 40X magnification. Fluorescence analyses were performed in ImageJ version 2.0.0. For each image, regions of interest

(ROIs) outlining individual cortical layers were manually created based on nuclear packing as visualized by DAPI staining. Back-

ground fluorescencewas subtracted using amask based on an empirically determined thresholded value for each image. To account

for changes in cell density across cortical layers, the background-corrected signal for each channel was normalized to the DAPI in-

tensity. The normalized fluorescence intensity is the mean gray value of each RNAFISH channel for each cortical layer divided by the

mean DAPI gray value for the corresponding layer. DAPI-corrected values outside of three standard deviations of the mean were

removed.

To quantify the co-expression of RG and neuronal markers in S-phase cells, images of coronal sections probedwith the RGmarker

PAX6, the S-phase marker PCNA and the neuronal marker STMN2 were acquired on a Zeiss LSM780 confocal using a 63X magni-

fication objective. Confocal tiled images of developing human cortex encompassing the VZ and SVZ were acquired for the entire

thickness of the section at a 0.29mm Z-step size. For each cell quantified, the presence of puncta for each marker gene was deter-

mined across the entire Z-plane. Only cells expressing all three markers in the same Z-plane overlapping the DAPI staining were

considered to be an RG-Neuron transition state. A total of 5,692 cells were quantified from two donors. Similar image acquisition

and analysis was performed to quantify cells co-expressing PAX6 or EOMES, and ZFHX4. A total of 4,723 cells were quantified

from three donors.

QUANTIFICATION AND STATISTICAL ANALYSIS

Alignment and processing
The raw Drop-seq data was processed using the Drop-seq tools v1.12 pipeline from the McCarroll Laboratory (http://mccarrolllab.

org/wp-content/uploads/2016/03/Drop-seqAlignmentCookbookv1.2Jan2016.pdf). Reads were aligned to the Ensembl release 87

Homo sapiensgenome. We calculated unique molecular identifier (UMI) counts for each gene of each cell by collapsing UMI reads

using Drop-seq tools.

The raw Fluidigm C1 data was processed using a custom pipeline. Cell barcode demultiplexing and initial processing was per-

formedwith FluidigmmRNASeqHT_demultiplex.pl v1.0.2. Raw reads were aligned to the Ensembl release 75Homo sapiens genome

with RNA STAR (Dobin et al., 2013). Aligned reads were sorted and alignments mapping to different chromosomes were removed

from the BAM file using samtools (Li et al., 2009). Gene expression levels were quantified using HTSeq with a union exon model

(Anders et al., 2015).

Quality control statistics were collected using RNA STAR statistics, Drop-seq tools metrics, and PicardTools (commands

ReorderSam, CollectAlignmentSummaryMetrics, CollectRnaSeqMetrics, CollectGcBiasMetrics) and samtools (duplication metrics).

Assessment of doublet rate
Doublet rate, i.e., the frequency of which more than one cell was captured in a single Drop-seq droplet, was assessed by species

mixing experiments (Figure S1; Table S2). Overall doublet rate (mouse+mouse, human+human, human+mouse) is derived based

on the frequency of beads associating to both mouse and human cells in a single drop or well. For the species mixing experiments,

cells from mouse E15 cortical cultures were added to human cells at a concentration of 1:10 as described above. The raw Drop-seq

data was processed using the Drop-seq tools v1.12 pipeline from the McCarroll Laboratory (http://mccarrolllab.org/wp-content/

uploads/2016/03/Drop-seqAlignmentCookbookv1.2Jan2016.pdf). Reads were aligned to a mixed species reference genome

(Homo sapiens and Mus musculus) obtained from GEO GSE63269. The BAMs were then filtered into two organism specific BAMs

using the Drop-seq tools command ‘FilterBAM’. For each species-specific BAM, UMI counts were then calculated for each gene

of each cell by collapsing UMI reads using Drop-seq tools.

Filtering and normalization
To select Drop-seq cells for downstream analysis: 1) Cells were selected for downstream analysis using the cell barcodes associated

with the most UMIs. We estimated the number of cells captured as 5% of the input beads and retained this many cell barcodes for

downstream analysis. 2) For samples withmouse cells spiked in, mouse cells were removed by filtering all cells with > 250 UMIsmap-

ping to the mouse genome. 3) Removed cells with < 200 unique genes detected (gene detection: 31 count). 4) Removed cells with > 3
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standard deviations above the mean number of genes detected (3152). 5) Removed cells with > 5% of their counts mapping to MT

genes. 6) Removed genes detected in < 3 cells.

Normalization was performed using Seurat (v2.3.4; Butler et al., 2018). Briefly, raw counts are read depth normalized by dividing by

the total number of UMIs per cell, thenmultiplying by 10,000, adding a value of 1, and log transforming (ln (transcripts-per-10,000 + 1))

using the Seurat function ‘CreateSeuratObject’. Raw UMI counts data were assessed for the effects from biological covariates

(anatomical region, donor, age, sex), and technical covariates (library batch, sequencing batch, number of UMI, number of genes

detected, CDS length, GC content) (Figure S1). The effects of number of UMI (sequencing depth), donor, and library preparation

batch were removed using a linear model from the read depth normalized expression values (custom R scripts, lm(expression

�number_of_UMI + donor + lab_batch), and Seurat function ‘ScaleData’).

Single-cell clustering and visualization
Clustering was performed using Seurat (v2.3.4) (Butler et al., 2018). Read depth normalized expression values were mean centered

and variance scaled for each gene, and the effects of number of UMI (sequencing depth), donor, and library preparation batch were

removed using a linear model with Seurat (‘ScaleData’ function). Highly variable genes were then identified and used for the subse-

quent analysis (Seurat ‘MeanVarPlot’ function). Briefly, average expression and dispersion are calculated for each gene, genes are

placed into bins, and then a z-score for dispersion within each bin is determined. Principal component analysis (PCA) was then used

to reduce dimensionality of the dataset to the top 40 PCs (Seurat ‘RunPCA’ function). Clustering was then performed using graph

based clustering implemented by Seurat (‘FindClusters’ function). Briefly, a K-nearest neighbor graph based on Euclidean distance

in PCA space is constructed from the PC scores for each cell. Edges between cells are weighted based on shared overlap in neigh-

borhoods determined by Jaccard distance. Cells are then iteratively grouped together with the goal of optimizing the density of links

inside communities as compared to links between communities. Cell clusters with fewer than 30 cells were omitted from further

analysis.

For visualization, t-distributed stochastic neighbor embedding (tSNE) coordinates were calculated in PCA space, independent of

the clustering, using Seurat (‘RunTSNE’ function). tSNE plots were then colored by the cluster assignments derived above, gene

expression values, or other features of interest. Gene expression values are mean centered and variance scaled unless other-

wise noted.

For sub-clustering analysis an iterative approach was used (Figure 2), cells from each initial cluster were re-processed, clustered,

and analyzed from the raw counts matrix using Seurat as described above. For larger clusters (> 1,000 cells) the top 10 PCs were

used, and for smaller clusters (< 1,000 cells) the top 5 PCs were used.

Cluster stability
To assess cluster stability, we adapted the approach from Hennig (2007) using bootstrapping and the Jaccard index. Briefly, a

bootstrap sample of cells is drawnwith replacement from the original dataset, then re-quality filtered, normalized, analyzed, and clus-

tered, then this process is repeated over 100 iterations. For each iteration, themaximum Jaccard index is computed between the new

clustering and the original clustering. The mean Jaccard index of 100 iterations of bootstrapping is reported (Figure S1F). Jaccard

Index values range from 0-1, with > 0.5 indicating stable clustering.

Differential gene expression analysis and cell type enrichment
In general, differentially expressed genes between different cell groups were determined using a linear model implemented in R as

follows: lm(expression �number_of_UMI + donor + lab_batch). P values were then Benjamini-Hochberg corrected. To identify cell

type enriched genes, differential expression analysis was performed for each cluster individually versus all other cells in the dataset

for genes detected in at least 10%of cells in the cluster. Geneswere considered enriched if theywere detected in at least 10%of cells

in the cluster, 0.2 log2fold enriched, and Benjamini-Hochberg corrected p value < 0.05 (Table S6).

Pseudo-time analysis
Monocle 2 was used to construct single-cell pseudo-time trajectories (Qiu et al., 2017; Trapnell et al., 2014). First, the dataset was

subset to cells in Seurat clusters inferred to be part of the neurogenesis differentiation axis (progenitor and excitatory neuron clusters)

(Figure 1I). The subset dataset was then run through the Monocle 2 pipeline beginning with raw counts. Dispersed genes to use

for pseudo-time ordering were calculated using the ‘estimateDispersions’ function and required to be expressed in at least 10 cells.

DDRTree was used to reduce dimensions and the effects of number of UMI (sequencing depth), donor, and library preparation batch

were corrected for (Monocle function: reduceDimension(mo_filtered, max_components = 30, residualModelFormulaStr =

‘‘�number_of_UMI+donor+lab_batch’’). The visualization function ‘plot_cell_trajectory’ was used to plot the minimum spanning

tree on cells.

Stability of cluster gene expression signatures
Cluster gene expression signatures were evaluated by the stability in mean gene expression level ranking. Gene expression ranking

was determined by mean expression level for each gene across all cells in the cluster. A bootstrapping approach was then used

to evaluate stability of the gene expression rankings. Cells from each respective cluster were sampled with replacement over
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1,000 iterations. At each iteration, a sample population was drawn pseudo-randomly and the mean expression level across the pop-

ulation was calculated and then genes were ranked by mean expression level, with a ranking of 1 being the most highly expressed.

The mean of the rankings over all iterations and the standard deviation were plotted (Figures S2G, S5B, and S5C).

Alignment of single-cell datasets
Datasets were aligned using Seurat canonical correlation analysis (Butler et al., 2018). First, read depth normalized expression values

were mean centered and variance scaled for each gene. Then the 2,000 most highly variable genes were identified for each dataset

using the Seurat ‘FindVariableGenes’ function. Next, canonical correlation analysis was run using the union of the variable gene sets

as described in Butler et al. (2018). The analysis returns canonical correlation vectors (CCV) across both datasets, which are then

used to align the datasets.We used the top 20 CCVs to run the alignment procedure. The datasets were then aligned using the Seurat

‘AlignSubspace’ function, which utilizes CCVs and a nonlinear timewarping algorithm to alignmetagenes between datasets.We then

applied t-SNE to reduce dimensionality to plot the aligned datasets.

Comparison to bulk tissue RNA-seq
Bulk tissue RNA-seq samples from human fetal neocortex (GW17-19) GZ (n = 9) and CP (n = 9) were obtained from de la Torre-Ubieta

et al. (2018). GZ and CP dissections were carried out as described above. Bulk tissue RNA-seq samples were read depth normalized

to counts per million (CPM). For comparison to single-cell RNA-seq data from a different laboratory, we obtained Fluidigm C1 gener-

ated raw sequencing data from human fetal brain from Pollen et al. (2015). For all single-cell datasets, single-cell expression profiles

were pooled by aggregating gene expression counts across groups of cells to simulate bulk tissue RNA-seq samples. To aggregate

or pool gene expression counts, groups of cells were randomly drawn from the single-cell dataset, and raw counts were summed

across each group of cells for each gene to pool the expression profiles. Each pooled expression profile was then read depth normal-

ized to CPM.

To compare pooled samples of different sizes to bulk tissue RNA-seq by correlation in gene expression values, 1) Samples of

different numbers of cells were drawn, and counts were summed across the cells for each gene to make pooled samples of sin-

gle-cells. 2) Gene expression levels (summed counts) of the pooled single-cell datasets were then correlated to the mean CPM of

the bulk tissue RNA-seq dataset (Figure S4B).

To identify genes under-represented in single-cell RNA-seq compared to bulk tissue RNA-seq, we identified genes with higher or

lower relative expression in the pooled single-cell expression profiles compared to bulk tissue RNA-seq. Genes greater than two

standard deviations from the mean relative expression level of pooled versus bulk were labeled as under or over-represented in

the respective single-cell RNA-seq dataset. To assess biases in capture of different cell types with Drop-seq, the expression of

groups of cell type marker genes in the pooled Drop-seq dataset were compared to expression in the bulk tissue RNA-seq dataset.

The expression ratios of pooled Drop-seq versus bulk tissue RNA-seq were converted to a z-score for plotting (Figure S4I).

Gene Ontology enrichment analysis was performed using g:Profiler (Reimand et al., 2016).

Cell type enrichment of TFs and co-factors
TFs, co-factors, and chromatin remodelers were obtained from AnimalTFDB 2.0 (Zhang et al., 2015). Genes were considered en-

riched in a major cell type if they were > 0.4 log2fold enriched for any cluster corresponding to cells of that type, and were < 0.25

log2fold enriched for any other cluster (Figure 3A). For example, radial glia (RG) enriched genes are > 0.4 log2fold enriched in either

or both the ventricular radial glia (vRG) and outer radial glia (oRG) cluster, and < 0.25 log2fold enriched in any other cluster.

Subplate markers
To derive a human SP set of markers across mid-gestation, we used the fetal LCM laminae dataset (Miller et al., 2014) to identify SP

enriched genes (Figures 4B–4D). Genes were sorted by fold change of SP versus the VZ, IZ, CP, and MZ, using the Brainspan online

tool (http://www.brainspan.org/lcm/search/index.html), and then manually curated for SP specificity.

Cell cycle analysis
Cell cycle state was determined by mean expression of groups of cell cycle stage marker genes obtained fromMacosko et al. (2015)

(Figures S6A–S6C). Two methods for cell cycle normalization were tested: 1) All cell cycle stage marker genes were excluded from

the highly variable genes used for PCA, tSNE, and Seurat clustering described above. 2) Cell cycle correction by removing the effects

of cell cycle state using a linear model via Seurat. First, each cell is assigned a S-phase and G2/M phase score using Seurat’s ‘Cell-

CycleScoring’ function. Then the cell cycle score is regressed out along with number of UMI (sequencing depth), donor, and library

preparation batch using a linear model as described above.

Transition state analysis
Cells were considered positive for markers of a cell type if the mean expression of a group of cell type marker genes was > 0.5 log

normalized expression, e.g., RG+Neuron+ cells express RG marker genes at a mean expression level > 0.5 log normalized expres-

sion and neuronal marker genes at a mean expression level > 0.5 log normalized expression.
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Cell type gene signatures were determined using two methods: 1) Differential expression of cells in a type versus cells in another

type, e.g.to determine an RG signature and newborn neuron signature differentiating the two cell types, differential expression of RG

cells from RG clusters (oRG and vRG cluster) versus newborn migrating excitatory neurons (ExN cluster). 2) Enrichment of genes in a

cell type. For each cluster, genes enriched in the cluster were determined as described above. Then the union of enriched genes for

all clusters in a cell type was taken. The RG signature is the union of genes enriched in vRG and oRG clusters, the intermediate pro-

genitor (IP) signature is genes enriched in the IP cluster, and the Neuron signature is genes enriched in themigrating excitatory neuron

cluster.

Transcriptomic analysis of cycling mixed marker cells used cells dual positive for RG, IP, or neuronal markers specifically in the S-

phase or G2/M phase clusters, e.g., RG+Neuron+ S-phase cells are cells from the S-phase cluster and dual positive for RG and

neuronal markers. Dual positive cells were then compared to single marker type positive cells, e.g., RG+Neuron+ S-phase cells

were compared to RG+ Neuron- IP- and RG- Neuron+ IP- cells to ensure comparison to cells of a clear transcriptomic type. The

eigengene of the cell type signatures was then calculated for each cell positive for cell type markers in an expected differentiation

trajectory, e.g., to explore the RG to neuronal transition the Neuron eigengene was calculated using the neuron signature across

RG+ Neuron- IP- negative cells, RG+ Neuron+ cells, and RG- Neuron+ IP- cells. Cell type signatures were determined as described

above.

The amount of overlap and the magnitude of expression of the cell type gene signature of cycling mixed marker cells was

compared to the end point cell type. The gene signatures of the cell types involved in a differentiation trajectory were compared

by fold change of the gene signature in the beginning state cell type to the endpoint cell type. For example, for the RG to neuron tran-

sition, the RG and neuronal gene signatures are determined by differential expression of cells from the RG to the newborn neuronal

cluster. The expression of the neuronal gene signature genes is then compared in RG+ cells to RG+Neuron+ cells. The percent of the

neuronal genes that are more highly expressed in RG+Neuron+ cells versus RG+ cells is ascertained, this is the percent of shared

genes. The mean fold change of the neuronal genes in RG+Neuron+ cells versus RG+ cells is also determined and compared to the

magnitude of the mean fold change in RG+ versus Neuron+ cells, this is the percent of fold change.

Cell-type specific regulatory elements
A map of regulatory elements active in developing fetal cortex generated from chromatin accessibility data (ATAC-seq) (Buenrostro

et al., 2013) was obtained from (de la Torre-Ubieta et al. (2018). Promoter elements were identified as accessible chromatin peaks

within annotated gene promoters (within 2kb upstream and 1kb downstream of the transcription start site). Distal regulatory elements

were then linked to genes by correlation between the promoter accessible peak and distal ATAC-seq peaks as described (de la

Torre-Ubieta et al., 2018). Cell-type specific regulatory elements comprise the union of accessible chromatin within the promoter

of a given gene and associated distal regulatory elements (enhancers) for each set of genes enriched within specific cell types. Reg-

ulatory elements associated with genes enriched in specific cell types were then used for regulatory element metrics (Figures 5A–5H)

and partitioned heritability analyses (Figure 8).

Gene regulatory networks
Cell-type specific regulatory networkswere identified based on genes enriched in cell clusters using the SCENIC pipeline (Aibar et al.,

2017). First, co-expressed modules between TFs and genes were identified from the single-cell expression data using GRNBoost.

The set of TFs used for the co-expression analysis consisted of 782 well known TFs from RcisTarget database. In total, 2,862,989 TF

and gene linkageswere identified. To obtainmore reliable TF and gene linkages, the top 10%of the linkages with highest scores were

kept for further analysis. Then the regulatory elements for each module were extracted from the active regulatory elements obtained

from de la Torre-Ubieta et al. (2018). A motif enrichment analysis was done for the regulatory elements using Homer. If the co-ex-

pressed TF has amotif enriched in the regulatory elements (p value < 0.01), it will be the regulon for this gene module. The motif data-

base consists of knownmotifs from Homer (Heinz et al., 2010) and novel motifs from JASPAR (Khan et al., 2018). The JASPARmotifs

were formatted by MEME (Bailey et al., 2009). Finally, the regulon activity (AUC score) for each module in each cell was scored by

AUCell (Aibar et al., 2017). Given the distribution of activity scores, the cells that have the regulon enriched were identified. A Fisher’s

exact test was performed to evaluate if a regulon is significantly enriched (p value < 0.05) in specific cell types based on the enriched

cell clusters (Table S7).

Partitioned heritability analysis
Partitioned heritability was assessed using LD score regression (v1.0.0) (Finucane et al., 2015). Heritability was calculated by

comparing the association statistics for common genetic variants falling within regulatory elements associated with specific cell

types, with the LD-score, a measure of the extent of the LD block. First, an annotation file was created, which marked all

HapMap3 SNPs that fell within the regulatory elements for each cell type. LD-scores were calculated for these SNPs within 1 cM

windows using the 1000 Genomes EUR data. These LD-scores were included simultaneously with the baseline distributed annota-

tion file from Finucane et al. (2015). Subsequently, the heritability explained by these annotated regions of the genome was assessed

from phenotypes for 18 GWAS (see Table S8 for references and sample sizes). The enrichment was calculated as the heritability ex-

plained for each phenotype within a given annotation divided by the proportion of SNPs in the genome and FDR correction within

each GWAS was used to correct for multiple comparisons.
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Comparisons to adult brain single-nuclei expression profiles
For comparison to single-nuclei RNA-seq data from human adult brain we obtained the gene expression counts matrix and cluster

enrichment scores from Lake et al. (2018) (GEO: GSE92942). The single-nuclei RNA-seq raw counts were read depth normalized by

dividing by the total number of UMIs per cell, thenmultiplying by 10,000, adding a value of 1, and log transforming (ln(transcripts-per-

10,000 +1).

Gene list enrichment analysis
Genes with human specific expression patterns across cortical development were obtained from Bakken et al. (2016). High confi-

dence ASD risk genes, defined by harboring high risk likely protein-disruptingmutations, were obtained fromSanders et al. combined

de novo and TADA analysis (66 genes FDR < 0.1) (Sanders et al., 2015). Intellectual disability (ID) risk genes were obtained from pre-

vious exome sequencing of patients with idiopathic and non-syndromic (de Ligt et al., 2012; Rauch et al., 2012) and subset to mu-

tations presenting de novo in patients and likely to be gene-disrupting (frameshift, nonsense or splicing sites).

In order to obtain a list of high-confidence epilepsy risk genes, we curated ClinVar and OMIM (access date: May 2018). We first

searched ClinVar for ‘‘epilepsy’’ associated variants which resulted in 7,011 variant-phenotype entries. Variants identified as having

a clinical significance of uncertain, benign, likely benign, not provided, or drug response were removed while variants with a clinical

significance of risk factor, likely pathogenic, pathogenic, or conflicting interpretations of pathogenicity were retained. Large structural

variants disrupting more than one gene were also removed. This resulted in 1,227 entries with an identical gene-condition-clinical

significance (> = 1 variant listed per gene). Genes lacking a single variant with a clinical significance of pathogenic were removed

and the remaining entries were then manually curated using OMIM. OMIM genes for which the molecular basis was known were

then evaluated for the strength of evidence from the reported clinical features and the molecular genetics. If the clinical features re-

vealed the patients never met the criteria for epilepsy (e.g., two or more unprovoked seizures) or if seizures were a variable clinical

feature rather than a defining feature of the syndrome these genes were excluded from the high-confidence list. Similarly, if the

molecular genetic evidence was not sufficient (e.g., not a large enough sample size) these genes were excluded from the high-

confidence list. Finally, we cross checked that all high-confidence genes from OMIM’s Phenotypic Series for Epileptic encephalop-

athy early infantile were included on our list, resulting in the addition of 14 genes. This resulted in a final list of 109 high-confidence

epilepsy risk genes.

Enrichment log2odds ratios were calculated using a general linear model (binomial distribution).

DATA AND CODE AVAILABILITY

The accession number for the transcriptomic dataset reported in this paper is dbGaP: phs001836.

An online interface to facilitate sharing, exploration, and use of the dataset can be found at http://geschwindlab.dgsom.ucla.edu/

pages/codexviewer.
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