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SUMMARY

X chromosome inactivation (XCI) is a dynamically
regulated developmental process with inactivation
and reactivation accompanying the loss and gain of
pluripotency, respectively. A functional relationship
between pluripotency and lack of XCI has been sug-
gested, whereby pluripotency transcription factors
repress the master regulator of XCI, the noncoding
transcript Xist, by binding to its first intron (intron
1). To test this model, we have generated intron 1
mutant embryonic stem cells (ESCs) and two inde-
pendent mouse models. We found that Xist’s repres-
sion in ESCs, its transcriptional upregulation upon
differentiation, and its silencing upon reprogramming
to pluripotency are not dependent on intron 1.
Although we observed subtle effects of intron 1 dele-
tion on the randomness of XCI and in the absence of
the antisense transcript Tsix in differentiating ESCs,
these have little relevance in vivo because mutant
mice do not deviate from Mendelian ratios of allele
transmission. Altogether, our findings demonstrate
that intron 1 is dispensable for the developmental
dynamics of Xist expression.

INTRODUCTION

To balance the expression of X-linked genes betweenmales and

females, female mammals silence one of the two X chromo-

somes in a developmentally regulated process called X chromo-

some inactivation (XCI). XCI occurs in two waves in the course

of mouse embryogenesis. The earliest form of XCI begins at

the two- to four-cell stage in preimplantation embryo and is

imprinted, selectively occurring on the paternally inherited

X chromosome (Xp) (Huynh and Lee, 2003; Kalantry et al.,

2009; Namekawa et al., 2010; Patrat et al., 2009). At the preim-

plantation blastocyst stage, imprinted XCI is retained in the tro-

phectoderm and primitive endoderm lineages but reversed in

arising pluripotent epiblast cells yielding a state with two active
X chromosomes (XaXa) (Mak et al., 2004; Okamoto et al.,

2004; Silva et al., 2009; Williams et al., 2011). Upon implantation,

these epiblast cells establish a random form of XCI that stochas-

tically initiates on the maternal or paternal X chromosome and is

retained through the lifetime of mitotic divisions (Kay et al., 1993;

Rastan and Robertson, 1985). Similarly, mouse embryonic stem

cells (ESCs), which are derived from epiblast cells of the preim-

plantation blastocyst, undergo random XCI when induced to

differentiate ex vivo. The only exception to somatic maintenance

of randomXCI is inactive X (Xi) reactivation in the germline, which

is assumed to be essential for female fertility and occurs in

primordial germ cells as they traverse the hindgut to seed the

genital ridges (Chuva de Sousa Lopes et al., 2008; de Napoles

et al., 2007; Sugimoto and Abe, 2007). Xi reactivation is also

a feature of experimentally induced acquisition of pluripotency

via transcription factor-mediated reprogramming to induced

pluripotent stem cells (iPSCs), fusion of somatic cells with

ESCs, or somatic cell nuclear transfer (Eggan et al., 2000;Maher-

ali et al., 2007; Tada et al., 2001).

The cycles of XCI and Xi reactivation are associated with

changes in Xist RNA coating, where cells with a Xi display

coating by the noncoding Xist RNA on the Xi chromosome,

and those with two active X chromosomes lack XistRNA expres-

sion (Brockdorff et al., 1991; Brown et al., 1991). Xist’s function

has been most studied in the random form of XCI in the mouse

system, where it is shown to be the critical trigger of XCI. The

upregulation of Xist RNA and coating of the X at the onset of

random XCI immediately lead to transcriptional silencing of

X-linked genes and result in the exclusion of RNA polymerase

II and the recruitment of repressive chromatin-modifying protein

complexes such as the Polycomb complex PRC2, which estab-

lishes an accumulation of H3K27me3 (Chaumeil et al., 2006;

Chow and Heard, 2009; Plath et al., 2003; Silva et al., 2003). A

stereotypic order of changes in chromatin structure culminates

in heritable silencing of either the maternally or paternally trans-

mitted X chromosome in each cell of the female adult mammal.

Xist is essential for XCI to occur in cis because its deletion leads

to silencing of the other X chromosome carrying an intact Xist

allele, regardless of parent of origin (Marahrens et al., 1997;

Penny et al., 1996). Moreover, the importance of Xist regulation

for the developmental and sex-specific context of XCI is
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demonstrated by its sufficiency: overexpression of a X-linked

Xist cDNA transgene in male mouse ESCs (XY:tetOP-Xist)

initiates XCI and cell death due to silencing of the single

X chromosome (Wutz and Jaenisch, 2000).

Xist is transcribed from a larger locus on the X chromosome

that has been defined as the minimal critical region for XCI and

besides housing Xist, contains other protein-coding and non-

coding activators and repressors of Xist, some of which act in

cis and others in trans (Rastan and Robertson, 1985; reviewed

in Minkovsky et al., 2012). The best-characterized repressor of

Xist is its antisense transcript, Tsix, which is highly transcribed

in epiblast cells of the preimplantation blastocyst and in undiffer-

entiated mouse ESCs/iPSCs, where Xist is repressed (Lee et al.,

1999; Sado et al., 2001; Maherali et al., 2007). Deletion of Tsix

leads to only slight Xist upregulation without causing precocious

XCI or Xist RNA coating in self-renewing, undifferentiated ESCs.

However, upon differentiation, XCI is skewed to the Tsix-deleted

X in female cells heterozygous for the mutant Tsix allele (Lee

et al., 1999; Lee, 2000; Luikenhuis et al., 2001; Sado et al.,

2001). The effect of Tsix deletion on Xist indicates that it partici-

pates in parallel pathwayswith other regulators ofXist repression

or activation.

Interestingly, the pluripotency factors Oct4, Sox2, and Nanog

have been implicated in the control of Xist expression in plurip-

otent cells. Navarro and colleagues found that in mouse ESCs,

Oct4, Sox2, and Nanog bind the first intron of the Xist gene

(intron 1) (Navarro et al., 2008), a finding that has been recapit-

ulated in many genomic data sets and extends to additional

pluripotency regulators such as Tcf3 and Prdm14, and early

developmental regulators such as Cdx2 (Figure S1A; Loh

et al., 2006; Marson et al., 2008; Ma et al., 2011; Erwin et al.,

2012). Such genomic regions of extensive pluripotency tran-

scription factor co-occupancy in the ESC genome occur

more commonly than would be expected by chance (Chen

et al., 2008). It is thought that these cobound genomic regions

represent functionally important sites and often represent

enhancer elements (Chen et al., 2008). Further support for

a gene regulatory role of intron 1 is that, in ESCs, the intron 1

region has a propensity to be in the three-dimensional prox-

imity to the promoter of Xist and adopts a DNase hypersensi-

tive state (Tsai et al., 2008). Additionally, pluripotency factors

appear directly linked to Xist regulation. Upon Nanog deletion

or inducible repression of Oct4, Xist is upregulated, and binding

of the pluripotency factors to intron 1 is lost (Navarro et al.,

2008). In male ESCs, which normally do not upregulate Xist,

experimentally forced Oct4 repression can even induce Xist

RNA coating in up to 10% of the cells (Navarro et al., 2008).

Another study could not replicate Xist RNA coating upon

Oct4 knockdown in male ESCs but observed biallelic XCI in

differentiating female ESCs upon Oct4 depletion (Donohoe

et al., 2009). A role for Nanog in Xist suppression is also sup-

ported by its expression pattern with regard to domains of Xi

reactivation in the preimplantation blastocyst, where the

restriction of Nanog expression demarcates the fraction of cells

undergoing reactivation of the imprinted Xi (Silva et al., 2009).

Furthermore, preimplantation embryos lacking Nanog are

unable to specify epiblast cells and to lose Xist RNA, whereas

forced expression of Nanog induces a more rapid loss of Xist
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RNA coating in developing preimplantation embryos (Silva

et al., 2009; Williams et al., 2011).

Together, these findings led to the model that pluripotency

factor binding to intron 1 is critical for repression of Xist in undif-

ferentiated XaXa ESCs. However, in the experiments leading to

this conclusion, cell identity and, therefore, likely the expression

of many genes were modulated by experimental changes in

pluripotency factor expression, which could confound the inter-

pretation that Oct4, Nanog, and other pluripotency factors act

directly on intron 1 of Xist to regulate XCI. It has also been sug-

gested that the pluripotency transcription factors control the

levels of positive and negative regulators of Xist because they

are binding to Tsix and the trans-acting activator of XCI, Rnf12

(Donohoe et al., 2009; Gontan et al., 2012; Navarro et al.,

2010, 2011). Accordingly, an experiment directly addressing

the functional importance of binding to intron 1 showed only

subtle dysregulation of XCI: in female ESCs carrying a heterozy-

gous deletion of intron 1 of Xist, XCI remained suppressed in the

undifferentiated state. However, upon differentiation, Xist ap-

peared more highly expressed from the chromosome carrying

the mutation, supporting a role for intron 1 in suppressing Xist

during differentiation (Barakat et al., 2011). Furthermore, deletion

of intron 1 in the context of a transgene carrying the extended

Xist locus moderately increased expression of Xist in undifferen-

tiated ESCs, which was amplified by simultaneous deletion of

the antisense transcript Tsix (Nesterova et al., 2011). Notably,

these results were very variable between clones potentially re-

flecting the effect of transgene copy number and variations (Nes-

terova et al., 2011). Binding to Xist intron 1 has also been

proposed to govern the switch from imprinted to random XCI

in preimplantation development (Erwin et al., 2012). In vitro, gel

shift assays suggest that the binding events between Xist’s

intron 1 and the pluripotency regulator Oct4 and the trophecto-

derm regulator Cdx2 are direct but mutually exclusive (Erwin

et al., 2012). Collectively, these findingsmotivated us to examine

the role of Xist intron 1 further to test the model wherein pluripo-

tency factor binding silences Xist to prevent XCI in pluripotent

cells and to determine the role of the intronic region in X chromo-

some reactivation events, both in vivo and in vitro.

RESULTS

Generation of Conditional Xist Intron 1 ESC Lines
To further define the role of Xist intron 1, we used gene targeting

to generate a conditional allele in male and female mouse ESCs.

We tested the requirement of intron 1 in both sexes because

male ESCs are able to undergo XCI upon forced expression of

Xist, providing a sensitive background for monitoring Xist regula-

tion independently of other X chromosomes present in a cell

(Wutz and Jaenisch, 2000). By contrast, heterozygous female

ESCs permit investigation of kinetics of XCI upon induction of

differentiation and insight into potential effects on skewing of

XCI between the targeted and wild-type (WT) chromosome.

To delineate the region of intron 1 involved in Xist repression,

we inspected where pluripotency transcription factors bind

within the intron 1 region as detected by published chromatin

immunoprecipitation sequencing (ChIP-seq) data sets (Marson

et al., 2008). We also determined the localization of pluripotency



factor DNA binding motifs and considered sequence conserva-

tion across mammals (Figure S1). We found that co-occupancy

of pluripotency factors occurs in a 600 bp region within the full

2.8 kb sequence of intron 1. Most of the intron 1 sequence is

not conserved in placental mammals; however, two highly

conserved composite Oct4-Sox2 DNA binding motifs, which

are found to stabilize a ternary Oct4-Sox2-DNA complex in the

expression of many ESC-specific genes, underlie the ChIP-seq

binding peaks of Oct4 and Sox2 (Figure S1; Reményi et al.,

2003; Marson et al., 2008; Mason et al., 2010; UCSC genome

browser phastCons conserved-elements track, http://genome.

ucsc.edu). On the basis of these data, we decided to delete

800 bp of intron 1 and, subsequently, refer to this mutation as

‘‘intron 1’’ (Minkovsky/Plath allele; Figure S1).

We flanked the 800 bp intron 1 region with loxP sites, simulta-

neously inserting a hygromycin-resistance cassette (yielding

a targeted allele with 3loxP sites), and, subsequently, generated

experimental (1lox) and control (2lox) alleles by transient expres-

sion of Cre recombinase in hemizygously targeted male and

heterozygous female ESCs (Figures 1 and S2). To be able to

monitor the effects of the deletion of intron 1 on Xist in cis in

female cells, we employed genetically polymorphic F1 2-1

female ESCs (129/Cas) carrying a MS2 RNA tag in exon 7 of

Xist on the 129 allele (Jonkers et al., 2008). Southern blotting

and PCR analysis confirmed that intron 1 was targeted in cis to

the MS2 RNA tag in female ESCs (Figure S2). Male- and

female-targeted ESC lines showed normal chromosome

complement upon karyotyping (Figure S2; data not shown).

To confirm that deletion of 800 nucleotides from intron 1 suffi-

ciently removes pluripotency factor binding, we performed ChIP

against Oct4 and Sox2 coupled to quantitative PCR for the tar-

geted region of intron 1, neighboring intronic regions, the Xist

promoter, and previously validated control regions (Navarro

et al., 2008). Importantly, we did not observe an increase in

Oct4 or Sox2 binding in these regions upon deletion of intron 1

(Figures 1G–1I). Thus, compensatory binding at cryptic binding

sites upon intron 1 deletion appears unlikely.

Ectopic Xist RNA Coating Is Not Observed in Intron
1-Deleted Undifferentiated and Differentiating Male
and Female ESCs
To understand the role of intron 1 in the regulation of XCI, we first

performed fluorescence in situ hybridization (FISH) to analyze

the expression and localization of Xist and Tsix RNA at the

single-cell level using strand-specific RNA probes. Undifferenti-

ated male and female ESC lines displayed no significant Xist

RNA cloud or pinpoint signal in the presence or absence of intron

1 (Figures 2A and 2B). The absence of Xist RNA coating in the

undifferentiated ESC state was confirmed by the lack of a Xi-

like enrichment of H3K27me3 in Nanog+ cells, which is known

to occur on the Xi when Xist RNA coats (Plath et al., 2003; Silva

et al., 2003) (Figures S3A and S3B). In agreement with this

finding, the signal for Tsix was present in the majority of cells in

each case and indistinguishable among all tested genotypes

(Figure 2A).

Upon induction of differentiation by embryoid body (EB)

formation, the lack of intron 1 did not induce Xist RNA in male

ESCs to a level detectable by FISH (data not shown) and yielded
no Xi-like enrichment of H3K27me3 (Figures S3C and S3D),

indicating that intron 1 is not an essential regulator of Xist

suppression in differentiating male ESCs when all other regula-

tors of XCI are intact. Heterozygous 1lox/WT female ESCs

formed Xist RNA clouds and H3K27me3 Xi foci at comparable

rates to 2lox/WT control ESCs (Figures 2C, 2D, S3C, and S3D).

Xist RNA levels were also similar between undifferentiated and

differentiating male and female ESCs, with or without intron 1,

in RT-PCR experiments (Figure 2E). Proper differentiation was

confirmed by decrease in Nanog transcript levels (Figure 2F).

Furthermore, the use of Xist intron 1-spanning PCR primer pairs

ruled out dramatic secondary effects of intron 1 deletion on Xist

splicing (data not shown).

Next, we assessed whether XCI is skewed upon intron 1 dele-

tion in differentiating female ESCs. The polymorphic 129/cas F1

2-1 female ESC line is known to have a baseline skewing of XCI

toward the 129 allele such that approximately 70% of the cells

will silence the 129 allele, due to strain-specific haplotypes

(Cattanach and Isaacson, 1967). Due to the integration of the

MS2 RNA tag on the intron-targeted 129 X chromosome,

combined RNA-FISH for MS2 and Xist sequences can distin-

guish between Xist being expressed from the targeted chromo-

some (positive for both Xist andMS2 signals) and the untargeted

X (only marked by the Xist probe) (Figure 2C; Jonkers et al.,

2008). We found that, at the single-cell level, female 1lox

intron/WT ESCs consistently had �15% more cells expressing

the MS2-tagged Xist than their 2lox/WT counterparts, in three

of four ex vivo differentiation methods (Figures 2G and S4).

This mild skewing effect in differentiating female ESCs is consis-

tent with published results (Barakat et al., 2011).

Genetic Interaction of Xist Intron 1 with Tsix

Next, we investigated the possibility that the intron 1-dependent

skewing of XCI in differentiating female ESCs represents a mild

effect on the intron 1-deleted X chromosome at the transition

to the differentiated state. We reasoned that such an effect

may bemore strongly revealed in the absence of other regulators

of Xist and sought to assay such an effect on a ‘‘sensitized’’

background for Xist transcription. Tsix represents the prime

candidate for a redundant Xist repressor that could compensate

to repress Xist in the absence of intron 1. One study supports the

view that a functional role for the intron can be uncovered in the

absence of Tsix because male ESCs with randomly integrated

genomic Xist transgenes lacking intron 1 and a functional Tsix

allele dysregulated the expression of the transgenic Xist (Nester-

ova et al., 2011). We therefore performed the aforementioned

analyses in male ESCs lacking intron 1 in the endogenous

Xist allele on the background of a previously characterized Tsix

loss-of-function mutation at the endogenous locus (Figure 3;

Lee et al., 1999; Luikenhuis et al., 2001; Sado et al., 2001). We

targeted the disruption of Tsix to both 2lox and 1lox intron

male ESCs using a construct that inserts a splice acceptor-

IRESbGeo cassette in exon 2 of Tsix resulting in an early tran-

scriptional stop (Figure 3A) (Sado et al., 2002). Correct targeting

and loss of the Tsix transcript were confirmed by Southern blot

(Figure 3B) and absence of FISH signal for Tsix (Figure 3C).

As expected, in the presence of intron 1 (2lox intron 1),

Tsix deletion in male ESCs induced a mild transcriptional
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Figure 1. Generation of Male mouse ESCs Carrying a Conditional Xist Intron 1 Allele

(A) Gene targeting and Southern blotting strategy schematic for male ESCs. Transient expression of Cre recombinase in properly targeted 3lox clones yielded

both 2lox (control) and 1lox (experimental) ESC lines.

(B–E) Representative images of correctly targeted clones from Southern blot analysis.

(F) PCR genotyping with primers A and C shows the presence of the 1lox allele, and genotyping with primers B and C shows that of the 2lox allele.

(G) Location of ChIP-qPCR primer sets within the Xist locus used in the subsequent figures. Primer pair 1 is located within the Xist promoter.

(H and I) ChIP-qPCR analysis of Oct4 (H) and Sox2 (I) binding to regions indicated in (G) and a known positive and negative control (within Rest and Amylase,

respectively) for Oct4 and Sox2 binding (van den Berg et al., 2008) in 2lox and 1lox intron 1 male ESCs (two clones each). Values represent the amount of DNA

precipitated after normalization to input chromatin and are given relative to binding within the positive control region. Error bars represent SD from triplicate qPCR

measurements. Asterisk (*) indicates high Ct values for the input samples in the genetically deleted regions, probably arising from support feeder cells.

See also Figures S1 and S2.
upregulation of Xist RNA compared to XY:2lox/Tsix-WT ESCs in

RT-PCR experiments, reaching a level found in female ESCs

(Figure 3D). Upon differentiation, XY:2lox intron/Tsix-Stop

ESCs further upregulated Xist transcript levels �5-fold (Fig-

ure 3D). However, this induction was rarely correlated with

a Xist RNA cloud signal detectable by RNA FISH or a Xi-like
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H3K27me3 accumulation (Figures 3E–3H) before and after

induction of differentiation, in agreement with previous reports

by Luikenhuis et al. (2001) and Sado et al. (2002). Combined

deletion of intron 1 and Tsix did not alter the Xist status in undif-

ferentiated ESCs but upon induction of differentiation, resulted in

a Xist RNA cloud-like signal in FISH experiments in 3%–6% of
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Figure 2. Analysis of Xist Expression in Undifferentiated and Differentiating Female and Male ESC Lines in the Presence and Absence of

Intron 1

(A) Strand-specific FISH for Xist RNA (green) and Tsix RNA (red) in undifferentiated male and female ESCs of the indicated genotypes, using RNA probes. DAPI

staining (blue) indicates nuclei. Representative images are shown. Amale ESC line carrying a doxycycline (dox)-inducible Xist allele in the endogenous locus was

used as positive control for the Xist-staining pattern, at 24 hr of dox addition.

(B) Graph summarizes the proportion of DAPI-stained nuclei with indicated patterns of XistRNA based on an experiment as described in (A). Pairs of independent

ESC clones of the given genotype were stained and counted. In each case, 500 nuclei were assessed.

(C) FISH with DNA probes targeting Xist RNA (green) and the MS2 tag (red), respectively, in female ESCs of indicated genotypes at day 10 of EB differentiation.

(D) Graph summarizing the proportion of Nanog-negative cells in day 10 EB-differentiated female ESCs with no, one, or two H3K27me3 Xi-like accumulations.

Notably, the number of cells within each H3K27me3 pattern is not statistically different (by Student’s t test) between 2lox/wt and 1lox/wt ESC lines. Values are

means of counts of independent clones as shown in Figure S4D; in each case, at least 500 nuclei were assessed.

(E) RT-PCR for XistRNA levels normalized toGapdh expression from one representative clone of indicated ESC genotypes in the undifferentiated state (ESC) and

at day 5 of RA differentiation (d5 RA). Error bars indicate SD from triplicate RT-PCR measurements in one experiment.

(F) As in (E), except that Nanog transcript levels were analyzed.

(G) Quantification of allele-specific Xist RNA cloud patterns from the experiment shown in (C) at days 6 and 10 of EB differentiation, given as mean of values from

counts of two independent ESC clones of the indicated genotype. Xist expression from the 129 chromosome (targeted chromosome) is detected by both the Xist

and MS2 probes, whereas Xist expression from the CAST chromosome is only detected by the Xist probe. The graph depicts the percentage of cells where the

intron 1-targeted 129 chromosome is coated by Xist RNA, as identified by colocalization of the Xist and MS2 signals. *p < 0.05 by Student’s t test with 500 Xist

clouds analyzed for each sample.

See also Figures S3 and S4.
cells compared to 0.2%–0.8% in differentiating XY:2lox intron/

Tsix-Stop cells (Figures 3E and 3G). We did not, however, see

any significant intron 1-dependent effect on Xist RNA levels by

RT-PCR comparing XY:2lox intron/Tsix-Stop and XY:1lox

intron/Tsix-Stop cells (Figure 3D) or an increase in the number

of H3K27me3 Xi-like accumulations (Figures 3F and 3H). Thus,

even though Xist RNA was induced in a slightly larger proportion

of differentiating cells in the absence of both Tsix and intron 1

than in the absence of either Tsix or intron 1, this upregulation

does not appear to be sufficient to mediate H3K27me3 enrich-
ment on the targeted X chromosome, suggesting that the RNA

does not efficiently coat the chromosome in these cells or that

the recruitment of Polycomb proteins is affected. We conclude

that these experiments reveal a subtle role of intron 1 in the

control in Xist expression, which may be related to the weak

skewing phenotype of XCI described above for differentiating

intron 1 mutant heterozygous female ESCs (Figures 2 and S4).

In a second assay, we tested the consequence of intron 1

deletion upon modulation of global Oct4 transcript levels. We

first confirmed the previously reported relationship between
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Figure 3. Xist RNA Pattern in Male ESCs Lacking Tsix and Intron 1

(A) Gene targeting and Southern blotting strategy schematic for the generation of the Tsix-Stop allele in male ESCs according to Sado et al. (2001) using the

pAA2D1.7-targeting vector.

(B) Male 2lox and 1lox intron 1 ESC clones were targeted with the Tsix-Stop allele. A correctly targeted 2lox intron 1/Tsix-Stop male ESC clone is shown in this

Southern blot analysis.

(C) Strand-specific FISH for Tsix RNA (red) in undifferentiated male ESCs of the indicated genotypes, using an RNA probe, indicates the absence of the Tsix FISH

signal in Tsix-Stop-targeted clones.

(D) Graph summarizing the transcript levels for Nanog and Xist normalized to Gapdh transcript levels as determined by RT-PCR from a representative clone of

each genotype in the undifferentiated state (ES) and at day 5 of RA differentiation. Control Xist RNA levels from WT undifferentiated male and female ESCs are

shown on the left. Error bars indicate SD from triplicate RT-PCR measurements in one experiment.

(E) Graph summarizing the percentage of undifferentiated ESCs of the given genotype with andwithout a XistRNA cloud-like pattern. Two independentmale ESC

clones for each genotype were analyzed by Xist RNA FISH with a RNA probe, and 500 nuclei were assessed.

(F) As in (E), except that the percentage of undifferentiated ESCs with and without a H3K27me3 Xi-like accumulation is given.

(G) Xist RNA cloud quantification as in (E), except that Nanog-negative cells were quantified upon day 10 of EB differentiation.

(H) As in (F) for H3K27me3 patterns at day 10 of EB differentiation in indicated ESC lines.

See also Figure S5.
the decrease of Oct4 levels and Xist RNA induction (Navarro

et al., 2008; Donohoe et al., 2009). Specifically, uponOct4 deple-

tion in the male ZHBTc4 ESC line, in which Oct4 expression can

be silenced acutely by the addition of doxycycline (Niwa et al.,
910 Cell Reports 3, 905–918, March 28, 2013 ª2013 The Authors
2000), Xist RNA levels were induced almost 100-fold 96 hr post-

induction ofOct4 repression (Figure S5A), and XistRNA could be

detected by FISH in a small number of cells (Figures S5B and

S5C). Notably, we observed that Oct4 transcript levels drop
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Figure 4. Enhancer Assay of Xist Intron 1

(A) Schematic representation of genomic frag-

ments of the entire genomic intron 1 region cloned

upstream of a luciferase reporter gene driven by

a minimal promoter. The intronic region was

broken up in three parts, with (B) representing the

part bound by pluripotency factors and flanked by

loxP sites as described in Figure 1 (Minkovsky/

Plath allele), and (A) and (C) representing regions

not bound by the pluripotency factors in ChIP-seq

experiments (Figure S1). Note that (B) was

concatenated 33 in the reporter construct.

(B) Three independent stable cell lines were

generated by electroporation of male ESCs with

the three constructs described in (A). Cells

carrying the reporter constructs were selected

with hygromycin, and an equal number of cells

was plated and maintained in the undifferentiated

state or differentiated for days 3 and 5 by LIF

withdrawal and/or RA addition as indicated. After

treatment, one-tenth of the cells in the well was

analyzed by luciferase assay. For each reporter

construct, values represent mean luminescence

units normalized to values from the respective cell

line in the undifferentiated state (n = 3, ± 1 SD).

See also Figure S6.
with faster kinetics than XistRNA levels increase, suggesting that

the effect of Oct4 on intron 1 is indirect and may require efficient

differentiation, which occurs at 96 hr post-Oct4 repression, as

indicated by the loss of the pluripotency factor Nanog (Fig-

ure S5D). In agreement with this conclusion, siRNA-mediated

knockdown of Oct4 in ESCs did not increase Xist RNA levels

more than 2-fold after 72 hr, confirming a previous report by

Donohoe et al. (2009) (Figure S5E). Furthermore, the absence of

intron 1 did not significantly alter Xist RNA levels in female ESCs

or in male ESCs lacking Tsix in Oct4 knockdown conditions

(Figure S5E). These data indicate that the slight increase in Xist

levels immediatelyuponOct4depletion is independentof intron1.

Intron 1 Acts as an Enhancer in a Reporter Assay
in Differentiating ESCs
The model of pluripotency factor binding to intron 1 to repress

Xist motivated us to directly assess whether intron 1 behaved

as a silencer in ESCs in a reporter assay. We transfected

constructs with intron 1 or control sequences upstream of

a minimal promoter driving luciferase and did not see intron 1-

dependent decreases in reporter activity (data not shown). The

small effect of intron 1 deletion on Xist RNA levels detected in

differentiating ESCs in the absence of Tsixmotivated us to revisit

these experiments and instead investigate whether Xist intron 1

represents a developmentally regulated enhancer that becomes

active upon induction of differentiation. We therefore tested

transactivation activity of intron 1 in undifferentiated and differ-

entiating ESCs using stably integrated luciferase reporter

constructs (Figure 4). Male ESCs were electroporated with hy-

gromycin resistance-bearing constructs containing either the

part of intron 1 that we deleted in our experimental cell lines or

two control sequences representing the upstream and down-

stream flanking regions of the intron 1 region (Figure 4A). The
experimental intron 1 region ((B) in Figure 4B) was cloned in triple

copy to amplify any putative enhancer activity of this region.

Pooled clones were subjected to monolayer differentiation by

LIF withdrawal with and without retinoic acid (RA) treatment.

Only cells bearing the intron 1 construct covering the pluripo-

tency factor binding site showed a robust increase in luciferase

activity upon differentiation (Figure 4B). In agreement with the

notion that intron 1 does not act as an active enhancer in undif-

ferentiated ESCs, we did not find a histone acetylation mark

characteristic of active enhancers, namely H3K27ac, examining

our own and published ChIP-seq data sets from ESCs, despite

binding of intron 1 by a battery of pluripotency factors and

p300 in undifferentiated ESCs (mouse ENCODE; Creyghton

et al., 2010; data not shown).

We also considered recently published spatial organization

data that demonstrated that the Xist gene lies in a topologically

associating domain (TAD) with genes encoding the noncoding

RNAs Ftx and Jpx/Enox and the protein-coding genes Rnf12/

Rlim, Zcchc13, and Slc16a2 (Nora et al., 2012). It has been

proposed that promoters and enhancers predominantly interact

(loop) within TADs (Dixon et al., 2012; Nora et al., 2012). Notably,

significant intra-TAD contacts originating from within intron 1 of

Xist, indicative of putative enhancer/promoter looping, were

only found in differentiated and not in undifferentiated ESCs

(Nora et al., 2012) (Figure S6A), consistent with our finding of

reporter activity upon differentiation. However, similar to our

result that Xist levels in female and male ESCs did not signifi-

cantly change in the absence of intron 1, we also did not see

intron 1-dependent transcriptional differences in the three

genes that come in contact with intron 1 within the Xist-contain-

ing TAD, before and during differentiation (Figure S6B). Thus,

even though intron 1 is pluripotency factor bound in ESCs, it

may only gain significant enhancer activity upon differentiation
Cell Reports 3, 905–918, March 28, 2013 ª2013 The Authors 911



though still not to an extent where deletion affects transcription

of Xist or of neighboring protein-coding genes.

Together, these ex vivo studies in undifferentiated and differ-

entiating male and female ESCs point to a minor role for intron

1 in the regulation of Xist expression, uncovered only when

another Xist repressor is deleted, and some aspect of X chromo-

some choice (potentially also through slight modulation of Xist

RNA levels). These data do not support intron 1 as a main aspect

of the mechanism of transcriptional repression of Xist, at least in

this tissue culture model.

Mice Are Normal in the Absence of Intron 1
Next, we assayed the significance of intron 1 in vivo. Our male

ESCs deleted for intron 1 (1lox) were injected into C57BL/6

blastocysts. Chimeras were obtained at high efficiency and

bred with C57BL/6 females to obtain germline transmission of

the mutant allele. Subsequently, the 1lox intron 1 allele showed

normal propagation through the maternal or paternal germline,

andmice completely lacking intron 1 (crossing 1lox/1lox females

with 1lox males) could be efficiently bred without any female-

specific defect (Figure 5A). Because X chromosome reactivation

occurs in the female germline and is likely essential for female

fertility, we assessed litter size of the F2 generation of female

homozygous knockout mice, and we found their litter sizes

unaffected (data not shown), indicating that intron 1 is not essen-

tial in mice.

To strengthen these observations of normal transmission of

the intron 1 mutation and rule out that genetic background

obscured a potential intron 1 phenotype in vivo, we generated

a second mouse model carrying an independent intron 1 muta-

tion. We generated mice using previously published 129/CAST

F1 female ESCs in which a larger (1.815 kb) region harboring

most of intron 1 was deleted on the 129 X chromosome (Bara-

kat/Gribnau allele) (Figure S1A; Barakat et al., 2011). Using these

ESCs, we previously observed a slight upregulation of Xist RNA

levels on the deleted chromosome upon induction of differentia-

tion (Barakat et al., 2011), in agreement with results obtained

using the Minkovsky/Plath allele, indicating skewing of X inacti-

vation toward the intron 1-deleted chromosome. Importantly,

this second mouse model also displayed normal Mendelian

transmission of the intron 1 lox allele (Figure 5B).

To assay whether random XCI has occurred in female mice

carrying a Xp lacking intron 1 and a maternally inherited WT X

chromosome, and whether the lack of the intron leads to any

skewing of XCI in vivo, we analyzed the allele-specific expres-

sion of Xist and two X-linked genes, Mecp2 and G6pdx, in poly-

morphic heterozygous females (1loxC57BL/6/WTCAST/Ei) and a WT

control (WTC57BL/6/WTCAST/Ei). In thesemice, the C57BL6 X chro-

mosome was transmitted from the father and the CAST/Ei WT X

from the mother. Allele-specific expression analysis was per-

formed using semiquantitative RT-PCR on RNA isolated from

various tissues (Figures 5C–5E). In these experiments, we used

the Barakat/Gribnau mouse model described in Figures 5B

and S1A. Normally, the paternal X chromosome initially

undergoes imprinted XCI, which is reversed in the epiblast cells

of the preimplantation blastocyst to allow subsequent random

XCI. The intron 1 region has been implicated to be important

for Xi reactivation in the ICM, and thus, if the absence of intron
912 Cell Reports 3, 905–918, March 28, 2013 ª2013 The Authors
1 prevents reactivation of imprinted XCI, we may observe

nonrandom XCI in the adult mouse (Navarro et al., 2008).

However, we did not find differences in allele-specific expres-

sion pattern in the presence and absence of intron 1 in heterozy-

gous female mice (Figures 5C–5E). As expected, the C57BL/6

Xist allele is more often expressed than the CAST/Ei X, consis-

tent with a modifier effect, likely resulting in more cells with an

inactivatedC57BL/6 X (Cattanach and Isaacson, 1967). Because

of the stochastic and clonal nature of XCI patterns in the adult

mouse, variations in skewing toward Xist RNA from the C57BL/

6 allele ranged from 50% to 90% (Figures 5C and 5E). Notably,

we did not see a preference of Xist upregulation on the intron

1-deleted X chromosome in tissues of the adult mouse in vivo,

albeit we observed slightly skewed Xist RNA levels in heterozy-

gous-differentiating female ESCs carrying the same mutant

intron 1 allele in vitro (Barakat et al., 2011). In agreement with

this notion, the X-linked genes Mecp2 and G6pdx, both subject

to silencing on the Xi, showed reciprocal and intron 1-indepen-

dent levels of expression from the C57BL/6 chromosome

compared to Xist, as would be expected from the fact that the

Xist-expressing chromosome is more likely to be silent (Figures

5D and 5E). These data suggest that the paternal transmission

of the intron 1 mutation does not interfere with reactivation of

imprinted XCI and subsequent random XCI. A reverse cross in

which the maternal allele lacked intron 1 also resulted in random

XCI (data not shown). In summary, the intron 1 genomic region is

dispensable in the mouse and does not critically control Xist

expression and skewing of XCI in vivo.

Intron 1 Is Not Required for Loss of Xist RNA upon
Reprogramming to iPSCs
Although there was no dramatic effect on XCI state in vivo, we

sought to understand the requirement for intron 1 inXist silencing

associated with reprogramming to iPSCs. We have shown

previously that female iPSCs derived from mouse embryonic

fibroblasts (MEFs) carry two active X chromosomes, where

Xist is efficiently repressed and Tsix upregulated, as seen in

mouse ESCs (Maherali et al., 2007). Another study suggested

that Xi reactivation occurs late in reprogramming at around the

time pluripotency genes become expressed, again suggesting

that pluripotency transcription factors could contribute to Xi re-

activation and the silencing of Xist, potentially via binding to

intron 1 (Stadtfeld et al., 2008). To test the role of intron 1 in

the Xist-silencing process during reprogramming, we bred

male mice carrying the 2lox intron 1 allele (obtained upon blasto-

cyst injection of our male 2lox ESCs described in Figure 1, Min-

kovsky/Plath allele) with female mice heterozygous for a Xist

knockout allele (Marahrens et al., 1997), yielding female XX:2lox

intron/DXist MEFs. Due to the presence of the Xist knockout

allele, the X chromosome bearing the conditional intron 1 allele

is exclusively inactivated in vivo by normal developmental

mechanisms (Marahrens et al., 1998). MEFs isolated from

E14.5 embryos had uniform Xist coating (Figure 6C) and were

transduced with retroviruses encoding the reprogramming

factors Oct4, Sox2, and Klf4, and subsequently infected with

adenovirus encoding Cre recombinase at day 4 of reprogram-

ming to efficiently delete the intron 1 region or with titer-matched

empty adenovirus in control samples (Figure 6A). This
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Figure 5. Transmission of the Intron 1 Mutation In Vivo

(A) Table summarizing the number and genotypes of offspring from indicated mouse crosses using the intron 1 allele generated in the Plath lab (see Figure 1,

Minkovsky/Plath allele).

(B) As in (A), except that mice carrying a second, independent intron 1 deletion generated by the Gribnau lab were crossed (see Figure S1 for comparison of

alleles; Barakat et al., 2011).

(C) Allele-specific RT-PCR analysis of Xist RNA detecting a length polymorphism that distinguishes Xist RNA originating from the C57BL/6 and CAST X chro-

mosome in organs of one female WT mouse and two littermate heterozygous 1lox/WT mice obtained by crossing a C57BL/6 male (with and without the intron 1

1lox allele) with a WT CAST/Ei female. Panel includes controls on the left mixing pure C57BL/6 and CAST/Ei brain cDNA template in given ratios. Numbers below

the tissue samples represent the relative band intensity for the C57BL/6 and CAST/Ei Xist allele determined by comparison with the control samples.

(D) Examination of tissues as in (C) for allelic expression of X-linked genesMeCP2 (top) andG6pdX (bottom) by RFLP RT-PCR. Panel includes controls (left) from

pure C57BL/6 or CAST/Ei mice as well as RNA isolated from a polymorphic C57BL/6 and CAST/Ei ESC line.

(E) Graph averaging the allele-specific expression data in (C) and (D) across all tissue and mice per genotype ± 1 SD.
experimental setup allowed us to test the role of intron 1 in re-

programming efficiency for the same infected fibroblast popu-

lation. Genotyping confirmed that Ad-Cre addition resulted in

efficient deletion of the intron 1 region (Figure 6B). To test

whether intron 1 deletion affects the efficiency of reprogram-

ming, we determined the number of Nanog-expressing colonies

at day 13 after reprogramming factor introduction because
Nanog expression has been shown to mark faithfully reprog-

rammed cells in retroviral reprogramming experiments (Maherali

et al., 2007).We found a comparable number of Nanog+ colonies

in the presence and absence of intron 1 (Figure 6D). Normally, at

this point of reprogramming, Xist RNA coating is just lost in

Nanog+ cells (K.P. and J. Tchieu, unpublished data). In agree-

ment with this notion, an examination of all Nanog+ cells for
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Figure 6. The Absence of Intron 1 on the Xi Does Not Interfere with Loss of Xist RNA Coating upon Reprogramming of MEFs to iPSCs

(A) Schematic representation of the reprogramming experiment with female MEFs bearing the conditional intron 1 allele on the Xi and a Xist knockout allele on the

Xa. Reprogramming was induced by infection with pMX retroviruses encoding the reprogramming factors, and the reprogramming culture was split at day 3

postinfection. Deletion of the conditional intron 1 allele was induced by delivery of 13 or 103 adenoviral particles carrying Cre recombinase, performed at day 4.

Control 13 Ad Null treatment was done in parallel. At day 13 of reprogramming, efficient deletion of intron 1 was assessed by genotyping, reprogramming

efficiency was determined by Nanog+ colony count, and loss of Xist RNA coating in Nanog+ cells was examined by IF/FISH. In addition, individual colonies were

picked, expanded, and analyzed further.

(B) PCR genotyping for the presence of the 2lox and 1lox intron 1 alleles in reprogramming cultures at day 13, using primers pairs A and C (top panel) or B and C

(bottom panel) (as in Figure 1F), indicates efficient deletion of intron 1 upon Ad-Cre treatment. ‘‘1’’ and ‘‘2’’ represent independent reprogramming samples. The

asterisk marks the WT allele, which is attributed to the presence of feeder cells in reprogramming cultures.

(legend continued on next page)
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the presence or absence of a Xist RNA cloud demonstrated that

nearly all Nanog+ cells carrying the 2lox intron 1 allele (Ad Null-

reprogramming cultures) lack a Xist RNA cloud at day 13 of

reprogramming (Figures 6C and 6E). Importantly, even in the

absence of intron 1 (Ad-Cre samples), Nanog+ cells displayed

loss of the Xist RNA cloud (Figures 6C and 6E) and of the Xi-

like H3K27me3 focus (data not shown). Furthermore, from the

Ad-Cre-treated reprogramming cultures, 14 iPSC clones were

isolated and clonally propagated and all confirmed to have lost

both intron 1 and the Xist RNA cloud, demonstrating the efficient

deletion of the intronic sequence early in reprogramming (Fig-

ure 6F). To ensure that the ability of an intron 1-deleted Xi chro-

mosome to downregulate Xist was not due to intron 1-depen-

dent events occurring within the first 4 days of reprogramming,

i.e., prior to Cre-mediated deletion, we also reprogrammed

MEFs carrying a germline-transmitted 1lox intron allele. These

XX:1lox intron/DXist MEFs displayed normal Xist RNA coating

before reprogramming (detectable in 95% of the cells) and lost

Xist RNA in Nanog+ colonies (Figure 6G). When comparing to

XX:2lox intron/DXist MEFs, MEFs lacking intron 1 form Nanog+

colonies with similar efficiencies (Figure 6H). Together, these

studies rule out that Xist intron 1 is necessary for the downregu-

lation of Xist in reprogramming to pluripotency.

DISCUSSION

In summary, our data argue that Xist intron 1 does not represent

an essential tether-coupling repression of both Xist and XCI to

the pluripotent state. ESCs lacking intron 1 do not dysregulate

Xist expression in the undifferentiated state nor upon in vitro

differentiation, reprogramming to the iPSC state leads to Xist

repression on a Xi lacking intron 1, and mice lacking intron 1

do not display any of the gross reproductive abnormalities that

would be expected if XCI was perturbed.

The deletion of intron 1 represents a clean experimental

system to probe the functional role of a genomic element that

displays very strong pluripotency transcription factor binding,

unhampered by the secondary effects on initiation of XCI asso-

ciated with global modulation of protein factors implicated in

the maintenance of the pluripotent state. Although correlative

binding studies were supported in part by Xist dysregulation

in ESC lines with inducible deletions of the pluripotency factors

Nanog and Oct4, our study cautions against extrapolating

these findings to the behavior of WT ESCs and mice. In the
(C) FISH of starting MEFs before introduction of pMX retrovirus displaying Xist

Nanog+ colonies in reprogramming cultures treatedwith AdNull and Ad-Cre, resp

Xist RNA using a DNA probe (green), and DAPI (blue). Note that Nanog+ cells at

double-stranded DNA probe, which can be attributed to Tsix expression.

(D) Graph summarizing reprogramming efficiency by counting Nanog+ colonies

(E) Graph showing the percentage of Nanog+ cells without a XistRNA cloud at day

culture coverslip were counted and analyzed for the Xist signal.

(F) The graph summarizes the percentage of Nanog+ nuclei with and without X

reprogramming cultures (200 nuclei counted for each iPSC line). Genotyping of a

Ad-Cre reprogramming cultures.

(G) MEFs were obtained from XX:1lox intron/DXist embryos and reprogrammed w

normal Xist RNA coating in the starting MEFs and the absence of Xist RNA coati

(H) Graph showing counts of Nanog+ colonies at day 13 of reprogramming for

matings) and one XX:2lox intron/DXist line that was reprogrammed in parallel.
case of the ZHBTc4 Oct4-repressable cell line, a compromised

pluripotency network may result in Rnf12 upregulation followed

by downregulation of the pluripotency factor Rex1, sufficient to

trigger XCI in male cells independent of intron 1 (Barakat et al.,

2011; Gontan et al., 2012). We also noted that ZHBTc4 ESCs

lack pinpoint Tsix signal and draw a corollary between their

Xist upregulation and our male ESCs deleted for Tsix (that,

when differentiating, have a significantly greater number of

Xist clouds upon deletion of intron 1).

In light of the two mild phenotypes (skewing effect of deleting

intron 1 in female ESCs heterozygous for the allele and the slight

increase in Xist clouds in Tsix and intron 1-deleted differentiating

male ESCs), we hypothesize that intron 1 loss leads to mild

destabilization of Xist transcriptional repression at the transition

to the differentiated state, in the narrow development window of

XCI initiation. Unable to capture a transcriptional difference in

Xist levels at the onset of in vitro differentiation, we believe that

more sensitive methods of transcript quantitation or investiga-

tion of chromatin state may address this hypothesis.

We noted a discrepancy between the ex vivo XCI-skewing

phenotype and the normally occurring in vivo XCI choice in the

absence of the intron. The lack of an intron 1 deletion effect in

adult mice and in ESC differentiation induced by bFGF/Activin

(Figure S5), which is sensitive to clonogenic skewing of XCI

because of serial passage and outgrowth of few cells (unlike

monolayer differentiation; Chenoweth andTesar, 2010), suggests

that Xist regulation is more robust in vivo than in vitro in the

absence of the intron 1. For instance, slightly different cis-acting

elements could be used in vivo and in vitro for regulating Xist ex-

pression. Thus, the cell culture-observed favoring of the intron-

deleted Xist could not be organismally relevant, or the stochastic

developmental nature of XCI could overshadow the effect.

It seems that the regulation of Xist, at the helm of a chromo-

some-wide program of gene expression, is genetically ensured

by a complex multifactor mechanism. The dispensability of

intron 1 for repression of Xist may be mouse specific because

mice appear to be unique in the functionality of Tsix and also in

the sufficiency of Xist activators such as Rnf12 to elicit Xist upre-

gulation: addition of one copy of Rnf12 is sufficient to drive Xist

expression in undifferentiated female ESCs (Jonkers et al.,

2009). Other eutherians such as bovines and humans, with trun-

cated and likely nonfunctional TSIX, may rely more on intron 1-

dependent mechanisms for Xist repression (Chureau et al.,

2002). Therefore, evolution of the overlapping Tsix gene and
RNA coating (left) and immunostaining/FISH images (right) of representative

ectively, at day 13 of reprogramming, showing Nanog expression (red), FISH for

this stage of reprogramming display a biallelic pinpoint signal when using the

at day 13.

13 of reprogramming. All Nanog+ cells (number is given) on the reprogramming

ist RNA clouds in individually expanded iPSC clones from Ad Null or Ad-Cre

ll iPSC clones confirmed that intron 1 was deleted in all iPSCs expanded from

ith Oct4, Sox2, and Klf4. Immunostaining/FISH images show the presence of

ng in resulting Nanog+ colonies at day 13 of reprogramming.

two different XX:1lox intron/DXist MEF preparations (A and B, from different
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the network of XCI activators in mice may have become the

dominant mechanism in Xist repression.

EXPERIMENTAL PROCEDURES

Generation of Mutant mESCs and Mice

Xist intron 1 transgenic mice analyzed in Figures 5B–5E were generated from

polymorphic XXist:2loxneo intron (129/Sv) XXist: WT (CAST/Ei) ESC line 29, in which a 1.8

kb region of Xist intron 1 was replaced by a floxed neomycin cassette (Barakat

et al., 2011). Germline transmission was verified by genotyping for the pres-

ence of the neomycin cassette integrated in the intron 1 region of Xist, and

XX:2lox-neo/WT females were bred to males expressing pCAGGS-Cre, to

loop out the selection cassette. Loopout of the selection cassette was verified

by PCR on genomic tail tip-derived DNA. All other intron 1-mutant ESC lines

and mice carrying the Plath/Minkovsky allele were derived from a targeting

construct generated by cloning the respective genomic fragments represent-

ing the 50 and 30 homology regions into the pCRII plasmid vector upon PCR

amplification (see Table S1 for list of primers used). The 800 bp of intron

sequence with a 50 loxP site was ligated between a 2.2 kb 50 homology arm

and 30 2.6 kb homology arm by AgeI/NotI subcloning. A positive-negative

CMV-HygroTK selection cassette flanked by loxP sites was inserted into the

unique NotI site. A diphtheria toxin gene (PGK-DTA) was inserted into a unique

backbone EcoRI site. A total of 40 mg of plasmid was linearized by MluI diges-

tion and electroporated into male ESCs (V6.5 line; F1 between C57BL/6 and

129SV/Jae) and into female F1 2-1 ESCs carrying the MS2 tag in the final large

exon of Xist (F1 between C57BL/6 and CAST/Ei) cells cocultured with drug-

resistant DR4 MEFs (Jonkers et al., 2008; Tucker et al., 1997). Hygromycin

selection (140 mg/ml) was started 1 day after, and clones were screened by

SpeI/KpnI digest and both 50 and 30 external probes. BmtI digest and 30

external probe were used to assess allelism of targeting in F1 2-1 clones. Tar-

geting efficiency was 30% in V6.5 and 1% in F1 2-1 cells. Two independent

V6.5 and one F1 2-1 clones were expanded, electroporated with pPAC-Cre

plasmid, and selected with G418 (300 mg/ml) for 8 days. Southern blot

screening was performed with a 50 probe and XbaI digest for 1lox and SpeI/

KpnI for 2lox clones. All subsequent intron 1 genotyping was performed

by PCR. For intron 1/Tsix-Stop double-transgenic ESC clones, XY:2lox and

XY:1lox V6.5 clones were targeted with pAA2D1.7 and screened by Southern

blot as previously described by Sado et al. (2001). XY:1lox and XY:2lox V6.5

ESCs were microinjected into C57BL/6 blastocysts to produce chimeric mice

following standard procedures. High-agouti coat color-contributing chimeras

were bred with C57BL/6 females for germline transmission. All animal ex-

periments were in accordance with the legislation of the Erasmus MC Animal

Experimental Commission and the UCLA Animal Research Committee.

Cell Culture, Differentiation, and Reprogramming Methods

ESCs were grown on irradiated DR4 MEFs in standard media (DMEM supple-

mented with 15% FBS, nonessential amino acids, L-glutamine, penicillin-

streptomycin, b-mercaptoethanol, and 1,000 U/ml LIF). Prior to induction of

RA differentiation, cells were feeder depleted for 45 min on gelatinized plates

and plated at a density of 5.0 3 104 cells/6-well in MEF media (same as ESC

media except 10% FBS and excluding LIF). One day later, MEF medium

was supplemented with 1 mM all trans RA (Sigma-Aldrich) or with DMSO

only (LIF withdrawal) and refreshed every 2 days. For EB differentiation,

ESCswere preplated on gelatin overnight to feeder deplete, briefly trypsinized,

and put in MEF media for suspension culture on bacterial culture plates for

4 days, then plated on gelatinized coverslips for another 2 or 6 days. For

FGF/Activin differentiation, ESCs were feeder depleted and 2.0 3 104 cells

plated on six wells pretreated with fibronectin in DMEMF12/B-27/N-2 (Invitro-

gen) supplemented with FGF-2 (R&D Systems; 40 ng/ml) and Activin A (Pepro-

Tech; 20 ng/ml). Medium was changed daily, and colonies were manually

passaged onto fibronectin several times then at passage 4 returned to feeder

cells. ZHBTc4 ESCswere induced to differentiate with 1 mg/ml doxycycline (re-

sulting in acute repression of Oct4) in standard ESC media (Niwa et al., 2000).

For reprogramming, primary MEFs were derived at E14.5, and three-factor

retroviral reprogramming was performed following previously published

methods by Maherali et al. (2007).
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ChIP was performed according to previously published methods by Maherali

et al. (2007). In summary, formaldehyde-crosslinked chromatin fragments

were generated by sonication, and 150 mg of material was precleared with

Protein A Sepharose beads. IP was performed overnight with 5 mg antibodies

targeting Oct4 (R&D Systems; AF1759) or Sox2 (R&D Systems; AF2018), or

with normal goat IgG (Santa Cruz Biotechnology; sc-2028) and subsequent

incubation with protein A Sepharose beads for 3 hr. Beads were washed

and eluted in TE/0.67% SDS. Both IP and input samples were reverse cross-

linked overnight at 65�C and treated with RNase A and Proteinase K before

DNA phenol-chloroform purification. The proportion of input material immuno-

precipitated was calculated using standard curves constructed from input

serial dilutions and comparing fractional measurements in IP and input relative

to a known region positive for Oct4 and Sox2 binding (Rest; van denBerg et al.,

2008). ChIP with goat IgG antibody did not find any enrichment (data not

shown).

Immunofluorescence and FISH Analysis

Cells were plated on glass coverslips (and in the case of EB differentiation, per-

meabilized with 5 min washes of ice-cold CSK buffer, followed by CSK buffer

with 0.5% Triton X-100, and another wash in CSK buffer, washed once with

PBS, and fixed for 10 min in 4% paraformaldehyde) (Plath et al., 2003). Immu-

nostaining with antibodies against Nanog (BD Pharmingen; 560259) and

H3K27me3 (Active Motif 39155) and combined immunostaining/FISH with

double-strand XistDNA probe labeled with FITCwere performed as previously

reported and mounted with Prolong Gold reagent with DAPI (Tchieu et al.,

2010). Xist and Tsix strand-specific RNA probes were made by in vitro tran-

scription of T3-ligated PCR products of cDNA templates using Riboprobe

system T3 (Promega) with Cy3-CTP (VWR) or FITC-UTP (PerklinElmer) (Maher-

ali et al., 2007).

qRT-PCR Analysis and Allele-Specific qRT-PCR

Cells were harvested from a 6-well format in TRIzol (Invitrogen), and RNA

purification was performed with the RNeasy kit (QIAGEN) according to

manufacturer’s instructions with on-column DNase treatment (QIAGEN).

cDNA was prepared using SuperScript III (Invitrogen) with random hexamers,

and qRT-PCR was performed using a Stratagene Mx3000 thermocycler with

primers listed in Table S1. Results were normalized to Gapdh by the DCt

method. To assess XCI skewing in adult mice, parts of organs were

collected, snap frozen, and triturated using micropestles in 1 ml of TRIzol

reagent. After an additional centrifugation to clear debris, 700 ml was added

to 300 ml fresh TRIzol, and RNA was purified following manufacturer’s

instructions. RNA was reverse transcribed with SuperScript II (Invitrogen)

using random hexamers. Allele-specific Xist expression was analyzed by

RT-PCR amplifying a length polymorphism using primers Xist LP 1445 and

Xist LP 1446. To determine allele-specific X-linked gene expression of

Mecp2 and G6pdx primers, MeCP2-DdeI-F and R and G6PD-ScrFI-F and

R were used to amplify respective restriction fragment-length polymor-

phisms (RFLPs). PCR products were gel purified and digested with the indi-

cated restriction enzymes and analyzed on a 2% agarose gel stained with

ethidium bromide. Allele-specific expression was determined by measuring

relative band intensities using a Typhoon image scanner and ImageQuant

software.

Luciferase Enhancer Assay

XY:2lox ESCs were transfected by electroporation with 40 mg of one of three

BamHI-linearized pgl4.27-cloned constructs carrying different intron frag-

ments (Promega; Table S1) and transferred to hygromycin selection (140 mg/

ml) 1 day later. After serial passaging and outgrowth of stable transfectants,

1.0 3 105 or 2.0 3 104 ESCs were seeded for differentiation with and without

(no LIF) RA for 3 and 5 days and harvested along with 2.0 3 105 ESCs and

measured for luciferase activity with the luciferase assay system (Promega).
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