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ABSTRACT

Motivation: DNA binding proteins play crucial roles in the regulation
of gene expression. Transcription factors (TFs) activate or repress
genes directly while other proteins influence chromatin structure
for transcription. Binding sites of a TF exhibit a similar sequence
pattern called a motif. However, a one-to-one map does not exist
between each TF and motif. Many TFs in a protein family may
recognize the same motif with subtle nucleotide differences leading
to different binding affinities. Additionally, a particular TF may bind
different motifs under certain conditions, for example in the presence
of different co-regulators. The availability of genome-wide binding
data of multiple collaborative TFs makes it possible to detect such
context-dependent motifs.

Results: We developed a contrast motif finder (CMF) for the de
novo identification of motifs that are differentially enriched in two
sets of sequences. Applying this method to a number of TF binding
datasets from mouse embryonic stem cells, we demonstrate that
CMF achieves substantially higher accuracy than several well-
known motif finding methods. By contrasting sequences bound by
distinct sets of TFs, CMF identified two different motifs that may
be recognized by Oct4 dependent on the presence of another co-
regulator and detected subtle motif signals that may be associated
with potential competitive binding between Sox2 and Tcf3.
Availability: The software CMF is freely available for academic use
at www.stat.ucla.edu/~zhou/CMF

Contact: zhou@stat.ucla.edu

Supplementary information: Supplementary data are available at
Bioinformatics online and the CMF website.
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1 INTRODUCTION

A TF binds the promoter or enhancer region of a gene, and in
turn regulates the expression of the gene. TF binding sites (TFBSs)
have a similar pattern or a motif usually described by a position-
specific weight matrix (PWM) (Stormo, 2000; Stormo and Hartzell,
1989). APWM is a w X 4 matrix, ® =(8;j),,x 4, where each element
0j represents the probability of nucleotide j € {A,C,G, T} being at
position i€ {1,...,w} and w is the length of the motif. Each position
is modeled independently and each row of a PWM sums to 1. Motif
discovery can be regarded as a missing data problem in the sense
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that neither the locations of TFBSs nor the motif parameters (PWM)
are known. Many computational methods have been developed
for motif discovery (Sandve and Drablgs, 2006; Vingron et al.,
2009), with most fitting into two broad categories, those based
on mixture models (Lawrence et al., 1993; Liu et al., 1995; Roth
et al., 1998) and those based on discrimination (Elemento et al.,
2007; Smith et al., 2005). Mixture models assume that a set of
sequences consists of a mix of TFBSs and background nucleotides.
While there are multiple approaches, most methods employ the EM
algorithm or Gibbs sampling to identify TFBSs and estimate PWMs
via iterative updating schemes. These iterative approaches tend to
rely on two steps: first, sequences are scanned given an estimated
PWM and background model to produce a set of predicted sites;
secondly, the PWM is updated using the predicted sites. Under
the mixture model, the counts of nucleotides from predicted sites
can be used to estimate the PWM in a closed form. Discriminative
motif finders (discriminators for short), on the other hand, use two
sets of sequences, usually a bound set and an unbound control
set, and attempt to find motifs that best distinguish between the
two groups (Barash et al., 2001; Elemento et al., 2007; Leung and
Chin, 2006; Readhead and Bailey, 2007; Smith ez al., 2005). Most
discriminators aim to maximize a measure of separation between the
two sequence sets. For example, discriminating matrix enumerator
(DME) (Smith et al., 2005) uses a measure based on likelihood ratio
(LR) and FIRE (Elemento et al., 2007) uses mutual information.
Again, these methods utilize iterative approaches to update a PWM
such that their measure of separation improves. However, even with
TFBSs predicted there is generally no closed-form estimation of
the PWM under a discriminative model. As such discriminators
often discretize the parameter space of the PWM to render discovery
computationally feasible and thus sacrifice accuracy in estimation.

Recent improvements in genomic coverage by chromatin
immunoprecipitation microarrays (ChIP-chip) and the coupling of
ChIP with high-throughput sequencing technologies (ChIP-seq)
have increased the number of bound regions identified while
decreasing the width of such regions. This increase in accuracy
and data size now enables many motif finders to easily identify
the consensus motif of a TF. We hypothesize, however, that a TF
may have context-dependent binding patterns and believe that the
accuracy of newer ChIP datasets, along with the greater availability
of such datasets, can be leveraged to discover these patterns.
We are motivated by two possible context-dependent TF binding
scenarios. The first is a co-regulation scenario where a TF binds
DNA with a cofactor in some sequences and binds alone or with a
different cofactor in other sequences. While the cofactor may have
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Table 1. Genome-wide binding datasets

Study Data type Factors

Sridharan et al. ChIP-chip Oct4, Sox2, Nanog, cMyc,
Klf4

Chen et al. ChIP-seq Oct4, Sox2, Nanog, Smadl,
Kif4, Stat3, Tefep2l1, Esrrb,
cMyc, nMyc, E2f1, Zfx, Ctcf

Marson et al. ChIP-seq Oct4, Sox2, Nanog, Tcf3

its own motif, the motif recognized by the original TF might be
different when binding occurs with and without its cofactor. The
second is a competition scenario where two TFs share similar DNA
binding domains that may compete for the same binding sites. Here,
sequences can be split into two groups based on context (i.e. the
two TFs compete for the sequence versus only one TF binding the
sequence). Differences in the motifs between the two groups might
provide insight into how each TF is targeted to its binding sites.

Here, we propose a contrast motif finder (CMF) that aims to
take advantage of multiple high-quality binding datasets to identify
subtle regulatory signals, such as context-dependent motifs, within
bound sequences. CMF is specifically designed to discriminate
between two sets of bound sequences and provide a non-discretized
estimation of PWMs. This method takes into account false positive
sites when updating PWMs and other model parameters. In this
article, we apply CMF to three recently published genome-wide
binding studies of TFs in mouse embryonic stem cells (ESCs) (Chen
et al., 2008; Marson et al., 2008; Sridharan et al., 2009). Each study
used ChIP-chip or ChIP-seq to investigate TFs thought to play a
role in ESC pluripotency and self-renewal (Table 1, for details see
Supplementary Materials).

2 METHODS

While CMF is designed to contrast two binding datasets, Sy and S», it is
useful to motivate our method with a more traditional scenario where S|
is a ChIP dataset (bound sequences) and S> is a set of control sequences.
Suppose we are predicting binding sites with a given PWM ©. For every
segment s =(s1,...,8y), 8; €{A,C,G, T}, of length w in a given sequence we
compute the LR:

1_[:4,:1 91'.?1

LR(S)= =————,
[TiZ1 60(si—1.50)

(¢))

where the background model, 6y, is assumed to be a first-order Markov
chain, i.e. 6p(s;—1,s;) is the transition probability from s;_; to s;. We then
predict binding sites by finding those segments with LR(s) greater than
some threshold, 7. In this application, predicted sites in S; are a mix of
true sites and false positives, while all those found in S, are false positives.
As such, we can use the false positives found in S> to both identify a proper
threshold in predicting binding sites and to correct the contribution from false
positives when estimating the PWM in §;. As a concrete example, Figure 1A
shows the distributions of normalized log-likelihood ratios, logLR(s), for all
segments of length w in Oct4 bound sequences in the Chen study and in a
set of control sequences, both scanned by the Oct4 PWM. Figure 1B shows
the right tails of the two distributions with LR >t=100. Here, the two
distributions diverge with the Oct4 bound sequences containing a higher
density of sites with LR(s) > 100. One sees that predicted sites in the Oct4
bound sequences, S;, are made of a mix of true sites and false positives
(shaded area in Fig. 1B). CMF is designed specifically to prevent such false
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Fig. 1. Motivational example for CMF. (A) The lowess smoothed
distributions of logLR(s) in Chen Oct4 bound sequences and control
sequences scanned by the Oct4 PWM. Each distribution was normalized
by the median and the SD of the control dataset. The vertical dashed line
indicates 7= 100. (B) A zoomed-in view of the right tails of the distributions.

positive sites from corrupting the resulting PWM. It consists of two main
steps, seed creation and updating motif parameters.

2.1 Seed creation

Many motif finding methods use word enumeration to identify promising
seeds (Liu et al., 2002; Sharov and Ko, 2009). Here, we develop a seeding
scheme that finds words enriched in one set of sequences as compared with
another set. Given two sets of sequences, S1 and Sy, we denote by L; and L,
the total numbers of length-w segments in S1 and S5, respectively. For every
w-mer x =(xp,...,X,) in the two sets of sequences, we compute its z-score,

P1—D2
VPU=DYE+ 1)

Where]’?\l =Ci/Ly, ?)\2 =Cy/Ls, al’ldﬁ:(cl +C2)/(L1 +Ly) with C; and Cy
the numbers of occurrences of the w-mer x in S; and S, respectively. We
define a seed centered at a w-mer x by incorporating neighboring w-mers,
where a w-mer y is considered a neighbor of x if it matches x with at most
m mismatches (Table 2, All). For all results in the article, we use w=7
and m=2, unless noted otherwise. We further filter these neighbors by two
biologically motivated constraints. First, we reason that only those neighbors
y that are overrepresented in the same set of sequences as the center w-mer, x,
should be included in the seed, i.e. {y:z(y)z(x) > 0} (Table 2, Dir). After this
step, we further filter by considering subsets of y called sub-neighborhoods.
We define a sub-neighborhood y; of the central w-mer x as those neighbors
with the same mismatch position(s) J, where J is a size-m subset of
{1,...,w}. For example, in Table 2 if J={2} then ypj= {ATGCAAA,
AcGCAAA, AgGCAAA} is the sub-neighborhood for mismatch position
2, where AaGCAAA is omitted since its enrichment direction differs from
that of the center ATGCAAA. Considering sub-neighborhoods is useful
since motifs do not exhibit great flexibility in each of their w positions;
instead most motif positions are rather rigid (high information content) with
a few positions being flexible. However, even when an initial seed is more
rigid than it should be, the iterative updating step, to be introduced next,
can modify the initial seed into a more degenerate PWM. For each sub-
neighborhood y; we compute the z-score (2) with the counts C; and C,
being the total numbers of occurrences of w-mers in y;. We use the best sub-
neighborhood (Table 2, Best), i.e. the y; with the greatest z-score, to construct

(@)

zZ(x)=

the seed. Each seed is summarized by two w x 4 count matrices, N(ll) and
N;I), where N(ll) is composed of the best sub-neighborhood sites in §; and
N(ZI) is similarly composed of the best sub-neighborhood sites in S, adjusted
for length (i.e. rescaled by L /L,). Because 3 is a set of control sequences,
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Table 2. Tllustration of seed construction for the Oct4 consensus from the
Chen Oct4 dataset (w=7,m=1)

Seed: ATGCAAA 7.45 599 171.9
Pos All Dir Best z + count —
¢cTGCAAA cTGCAAA 1.13 154 119.8
1 gTGCAAA gTGCAAA 0.33 102 93.8
tTGCAAA  (TGCAAA 1.39 169 125
AaGCAAA —1.3 189 2344
2 AcGCAAA AcGCAAA 1.80 27 5.2
AgGCAAA AgGCAAA 0.5 145 130.2
ATGCAcA —0.51 151 166.7

6 ATGCAgA  ATGCAgA ATGCAgA 34 247 119.8

ATGCAtA  ATGCAtA  ATGCAtA 34 226 104.2

ATGCAAc —1.08 44 62.5
7 ATGCAAg ATGCAAg 2.48 108 46.9

ATGCAAt  ATGCAAt 0.004 73 73

Lowercase nucleotides indicate mismatch position. ‘+ count —’: site counts and length-
adjusted site counts from S| and ;. Neighbors with a mismatch at positions 3-5 are
omitted to save space.

after being adjusted for length, N(zl) can be regarded as the expected count
matrix constructed from false positive sites in Sj.

2.2 Iterative updating

Once the best sub-neighborhood of each seed is determined, we take an
iterative approach to update the PWM for each seed whose sub-neighborhood
z-score or exact z-score (i.e. the z-score of the center) ranks within the top
M. The parameter M gives an upper bound for the number of motifs to be
found. In general, we recommend a choice of M =20; if the output motifs are
highly similar we recommend increasing M in order to find any secondary
motifs. Note that some seeds may share the same sub-neighborhood and thus
their respective count matrices, N(ll) and N(zl), will be identical. In this case
we only use the seed with the most significant exact z-score.

Recall that a seed is summarized by two count matrices N(ll) and N(Zl).
At iteration ¢ (r=1,2,...), denote the two count matrices constructed by

predicted sites in S; and S, by N(lt):(fo:j)wM and N(zt):(Nétj.j)wM,

respectively. Similarly, Ng) contains length-adjusted counts and represents
the expected count matrix of false positives in S1. Let F' = (F, l-(jt))w><4 be the
count matrix constructed by false positive sites predicted in S;. If F' is given,
the log-likelihood of ® is

1(@)=Z(fo¥j—Fi(jt))log9,~j. 3)
ij

However, F' is unknown and thus we estimate ® by maximizing the
expectation of /(®) with F, ,-(jt) replaced by its expectation N;t}j, subject to the
constraints that ¢;; >0 and Z]-G,;/ =1. This leads to the use of a differential
matrix
NO = (Vs =max(N{” —NJ,0) @)
in the estimation of ®, where ng.t):max(N ff?j—Ngz.j,O) for all i and j. To
prevent CMF from being trapped in a local mode, we then add 5% pseudo-
counts to each position in N> and normalize each row into probabilities
to obtain the updated PWM, ©©. Intuitively, subtracting off Ng) mitigates
the contribution that false positives would otherwise make to the PWM as
motivated in Figure 1.
Given ©“ and a threshold 7, we use the LR (1) to scan S| and S» to
predict TFBSs. The false discovery rate (FDR) of the sites predicted in S can
be estimated by FDR(7)=(C,L,/L2)/C;, where C;=)_ ¢ I(LR(s)>7) is

SES]

the number of sites found in Sj, CZZZSESZ I(LR(s) > 7) is the number
of sites in S> and L; and L, are defined as before. We find the lowest
7 such that FDR(7) <48, where § is an upper bound chosen by the user and
T is discretized to t€{100,200,...,2000} for computational efficiency. In
practice, we employ §=2/3. Once 7 is determined, denoted by v, sites
in Sy and S, with LR(s)> ) are used to create count matrix N(ltﬂ) and
length-adjusted count matrix Ngﬂ), respectively. Note that by correcting
for the influence of false positives in Equation (4) the algorithm becomes
robust to the discretization of t and the choice of §. At each iteration we
also determine whether the motif should grow or shrink by 1bp on either
side based on the Bayes factors at the flanking positions (see Supplementary
Materials for details).

Lastly, we check whether the algorithm has converged by measuring the
distance, d(’):max,;_,|95;+l)—8};)|, between O and OO If d® <e(=
0.01), we stop iterating. We summarize this iterative algorithm of CMF as
follows.

Initialize N(ll) and N(zl) by seed creation. For t=1,2,... and d0 <e:

(1) Update ©" using N\ and N’ by Equation (4);
(2) Scan S and S, with ®® and determine t);
(3) Use sites with LR(s) > t® to create N(IH'I) and N(ZH']).

2.3 Contrasting two bound datasets

CMF provides an option to indicate whether the second set of sequences is a
control set or a set of bound sequences, i.e. whether S» may contain enriched
motifs. When two bound datasets are contrasted, seed creation is identical
to the case when a ChIP dataset is contrasted to a control dataset, except
that seeds with the most negative z-scores (the bottom M) are also updated
into PWMs. For these seeds, PWMs are updated with the iterative algorithm
described above but with S and S, switched. In this case, CMF outputs two
groups of motifs, one enriched in Sy and the other enriched in S,.

‘When discriminating between two bound datasets, CMF not only corrects
for false positives but also masks out dominant motif signals present in both
datasets allowing weaker signals to be detected. For example, a consensus
motif present in both datasets will not lead to an enriched seed and will lack
stable differential counts when updating PWMs by Equation (4). Similarly,
GC-rich motifs will not be produced when two bound sequence sets, both of
high GC content, are contrasted.

3 RESULTS

3.1 A comparison of seeding methods

To assess the validity of our seeding method, we compared our
use of the best sub-neighborhood in seed construction to using
all neighbors or using those neighbors that match the enrichment
direction of the central w-mer. CMF was applied to a subset of 500
randomly sampled sequences of each Sridharan dataset (Table 1)
along with a set of control sequences created to match the binding
data distributions of width and distance to nearest gene. Note that
all subsequent sets of control sequences are created in a similar
manner for each TF dataset. Table 3 shows the consensus w-
mers of Oct4, Sox2, cMyc and KlIf4 ranked according to z-scores
computed from all neighbors (All Nhoods), from neighbors with
the same enrichment direction (Dir Nhoods) and from the best sub-
neighborhood (Best Nhoods). Here, one sees that using the best sub-
neighborhood outperforms the other neighborhood constructions
and often provides a higher ranking than using the exact match.
For example, the ranking of the Oct4 consensus w-mer improves
drastically with the best sub-neighborhood. It is ranked 4747th and
324th when using all neighbors and those neighbors with the same
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Table 3. A comparison of seeding methods

Table 4. A comparison of motif finding methods

TF Consensus Exact All Dir Best
w-mer match Nhoods Nhoods Nhoods
Oct4 ATGCAAA 11 (3.8) 4747 (1.7) 324 (14.3) 2 (6.5)
Sox2  ACAAAG 35(3.7) 5983 (—1.5) 3294 (11.7) 60 (5)
cMyc CACGTG 10 (4.3) 314 (9.9) 60 (18.4) 5(7.8)
Kif4 CCCACCC 4.(4.7) 54 (16.3) 12 (22.6) 1(8.7)

Rank (z-score)

enrichment direction, respectively. Using the best sub-neighborhood
it is ranked second, which is higher than the ranking of the exact
match. Similar results were seen in the Chen and Marson datasets.
Sox2 is the only TF for which the exact match outperforms the
best sub-neighborhood, which can occur if the true motif has few
low-information positions.

3.2 A comparison against popular motif finders

We compared CMF against three other motif finders: two
discriminators, DME (version 2) (Smith et al., 2005) and FIRE
(Elemento et al., 2007) and a Gibbs motif sampler, BioProspector
(Liu et al., 2001), based on mixture modeling. Although there are
many variants of Gibbs motif samplers, we chose BioProspector
since its run time is similar to that of CMF. We ran DME using
50 seeds and w=10. We ran FIRE using its default parameters,
where w starts at 7 and grows automatically. We ran BioProspector
with w=10 and 40 randomized attempts and utilized its option to
build a third-order Markov chain background model from the control
sequences. For CMF we took the top M =20 seeds with w=7 and
m=2.In the case of Nanog, where the top 20 seeds of CMF produced
similar Sox2 motifs for each dataset, we used 50 seeds to allow for
other potential motifs.

To conduct an unbiased comparison, we randomly split each
dataset in Table 1 into training and test sets. Training sequences
were composed of 80% of a TF binding dataset and a control
dataset of ~750 sequences. A test dataset consisted of the remaining
20% of bound sequences, Sa, and an independent control dataset
of ~4000 sequences, S’2. Motifs were found by applying a motif
finder to the training datasets. Identified motifs were then used to
scan the test datasets for predicting binding sites. Denote by £ the
number of sequences in Sﬁ. As a way to determine a proper LR
cutoft, 7y, we chose the £-th highest LR found in scanning S i, under
the assumption that each bound sequence should have one binding
site on average. Then we estimated the FDR from the number of
predicted sites in Sé with LR > 7y:

1| L
FDR= FI Y IARG) > 1) |
2 ses,

where Li and Lé are the numbers of length-w segments in the
test bound and control datasets, respectively. In this way, the total
number of predicted sites in Si was fixed to £ for every method
so that our comparison on FDR was meaningful. Table 4 shows
the FDRs of each motif finder with the percent changes relative
to CMF’s FDRs in parentheses. CMF exhibited a lower FDR in

ChIP(Motify ~ CMF DME FIRE BioP mix MLE

_ Oct4(Octd) 0.55 0.61(10) 0.62(12) 0.67(22) NA

§ Sox2Sox2) 041 NA 0.51 (23) 092 (120) NA

£ cMyc(Ebox) 040 0.48 (20) 0.63 (58) NA 0.71 (78)

& KIf4(KIf4) 043 059(38) 045(5) 0.68(59) 0.62 (43)
Nanog(Sox2)  0.55 0.76 (36) NA 0.70 (26) NA
Oct4(Octd) 031 0.78 (150) NA NA NA

Sox2(Sox2) 020 0.32(59) 0.5(150) 0.24 (20) 0.26 (30)

cMyc(Ebox) 0.19 0.19 (0) 020(8) NA NA

= nMyc(Ebox) 030 0.25(—18) 0.28 (—6) NA NA

%’ KI1f4(K1f4) 0.24 026 (11) 0.52(120) 0.26 (8)  0.46 (94)
Nanog(Nanog) 0.60 NA NA NA NA

Nanog(Sox2) 0.38 0.58 (51)
STAT3(Stat3) 0.17 0.22 (30)
CTCF(Ctcf) 0.18 0.23 (26)
Esrrb(Esrrb) 0.18 0.19 (4)

Oct4(SoxOct) 0.24 0.42 (71)
Sox2(SoxOct) 0.31 0.43 (40)
Nanog(SoxOct) 0.40 0.71 (80)
Tcf3(Sox2) 0.34 0.39 (14)

0.64 (67) 0.62 (60) 0.45 (17)
0.40 (140) NA 0.13 (—24)
0.49 (150) 0.44 (140) NA

0.37 (110) 0.20 (13) 0.13 (=25)

0.62 (160) 0.39 (60) 0.53 (120)
0.68 (120) 0.40 (29) NA

0.69 (73) 0.65(64) NA
0.55(62) 0.57 (68) 0.42(25)

Marson

FDRs are presented with the percent increase over the FDR of CMF in parentheses.
NA indicates that the method was unable to find the motif.

almost every dataset. Similar results were obtained for different
choices of the LR cutoff 7. Some exceptions are seen in nMyc
and cMyc from the Chen study where other methods showed a
slightly lower FDR or the difference was negligible. However, there
are many cases where CMF’s accuracy was much higher (>20%)
than the other finders marked in bold text in Table 4. For example,
the motifs found in all Oct4 and Sox2 datasets were much more
accurate than those of the other finders, regardless of whether the
consensus motif or the composite SoxOct motif was found. Oct4
and Sox2 often form a heterodimer that binds a Oct4 motif located
adjacent to a Sox2 motif, called the SoxOct motif (Reményi et al.,
2003). Furthermore, only CMF was able to find the Nanog motif,
CCATTA (Jauch et al., 2008, Supplementary Fig. 1), in the Chen
study. Note that Zfx, E2f1 and Smadl from the Chen study are
not included in Table 4, since Zfx has no known consensus motif
and none of the methods found E2f1 or Smad1l’s consensus motifs.
We repeated the same FDR comparison with simulated test control
sequences, and observed consistent improvement of CMF over the
other three motif finders (see Supplementary Materials for details).
To ascertain whether CMF’s decreased FDR was due to our seeding
or PWM updating techniques, we applied the EM algorithm under
the mixture model to update the PWM:s initialized by the seeding
method of CMF. This method produced inferior results in most cases
(Table 4, mix MLE), suggesting that CMF’s improved accuracy was
not solely due to its seed creation.

The results described above confirm the effectiveness of CMF in
finding consensus motifs. Hereafter, we focus on applying CMF to
identify context-dependent motifs by contrasting two sets of bound
sequences. To understand the implications of finding motifs in this
manner we considered ChIP-seq datasets in the Marson study, which
contains data for four TFs, Oct4, Sox2, Nanog and Tcf3 (Table 1).
Oct4, Sox2 and Nanog are key regulators of the main attributes of
ESCs, pluripotency (the ability to differentiate into any cell type)
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1
0.5
0 - 4\—;@ STA ng

Nanog Sox2 Smadl Stat3 Tcfcp2ll Esmrb  KIf4  cMyc nMyc E2fl  Zfx

Oct4 1107 | 058 054 0.8 0.13
pGCAT 224| 025 017 006  0.06
-log (p) 19 4 45 24

046 036 025 0.05 0.14 0.4 0.15
034 028 0.31] 0.27 0.42 0.6 0.27

3 1.6 1.1 24 22 74 45

Fig. 2. Context-dependent motifs recognized by Oct4. (A) The consensus Oct4 motif. (B) pGCAT motif found by CMF when contrasting sequences cobound
by Oct4 and Sox2 against sequences bound solely by Oct4. Boxes indicate positions that change from the consensus. (C) Proportions of cofactor binding
within 500 bp of the Oct4-motif peaks and the pGCAT peaks in the Chen study with corresponding P-values (—logqp) from difference of proportions tests.

There are 1107 Oct4-motif peaks and 224 pGCAT peaks.

and self-renewal (the ability to go through cell division an infinite
number of times) (Yu et al., 2007). Tcf3 is thought to temper the
expression of genes bound by Sox2 and keep them from being highly
expressed (Yi et al., 2008).

3.3 Context-dependent motifs of Oct4

Oct4 and Sox2 often form a heterodimer though both TFs also
bind DNA as monomers. While the consensus motif of Oct4 is
well characterized, some studies have suggested that it may bind
other motifs in the presence of other cofactors (Tomilin er al.,
2000). We wanted to investigate the possibility of distinct Oct4
motifs occurring in the presence and absence of Sox2. To that
end we contrasted sequences cobound by Oct4 and Sox2 (OS-
cobound seqs) with those only bound by Oct4 (Oct4-only seqs) in
the Marson study. Exact technical definitions of the two sequence
sets are given in Supplementary Materials. While the consensus
SoxOct motif, ATTTGCATAACAAAG, was found in OS-cobound
seqs, a different motif, ATGCGCAT, was found in the Oct4-only
sequences (Fig. 2). This new motif, which we term palindromic
GCAT (pGCAT), consists of two palindromic GCAT half-sites first
described in Tantin et al. (2008). This result can be replicated by
contrasting similarly defined sequence sets from the Chen study.
To investigate the biological implications of the two motifs, we
checked the occurrences of the other 11 TFs in the Chen study
(Table 1) in the respective neighborhoods of the pGCAT motif and
the consensus Oct4 motif. We scanned all Oct4 binding peaks in
the Chen study for the two motifs and split them into two groups:
those that only contain the Oct4 consensus motif, called Oct4-motif
peaks, and those that only contain the pGCAT motif, called pGCAT
peaks (see Supplementary Materials for details). We computed the
proportion of Oct4-motif peaks that have a binding peak of another
TF within 500 bp. We computed the same proportion for pGCAT

peaks and determined the significance of the difference between the
two proportions for every one of the 11 TFs (Fig. 2c).

We found that the Oct4-motif peaks and the pGCAT peaks were
co-occupied by two distinct groups of TFs. Oct4-motif peaks are
enriched for cobinding by Nanog, Sox2 and Smadl, which have
been shown to regulate pluripotency genes, while pGCAT peaks are
enriched for binding by nMyc, cMyc, E2f1 and Zfx, which regulate
genes related to protein metabolism (Chen et al., 2008; Kim et al.,
2008). Furthermore, Stat3, Tcfcp2ll and Esrrb also co-occupied
more often with Oct4-motif peaks (Fig. 2c) and may be included in
the first TF group. The two TF groups defined here have previously
been shown to regulate two separate groups of genes (Chen et al.,
2008; Kim et al., 2008; Ouyang et al., 2009; Sharov and Ko, 2009).
For example, Ouyang et al. (2009) showed that cMyc, nMyc, E2f1
and Zfx function as activators in general while TFs in the other group
can be either activators or repressors dependent on the target gene.
Binding of these two groups of TFs together can explain much of the
variation in gene expression in ESCs (R2 =0.65). Interestingly, in a
similar comparison of enrichments based on binding peaks instead of
motifs, the co-occupancy of the cMyc-group TFs is not significantly
different between Oct4/Sox2 cobound peaks and Oct4-only peaks
demonstrating the usefulness of the two motifs in classifying Oct4
binding peaks (see Supplementary Materials for details). The distinct
sets of cofactors enriched near Oct4-motif peaks and pGCAT peaks
suggest that the context-dependent motifs of Oct4 may be related
to the combinatorial binding of the two TF groups. Target genes
of Oct4 with only the Oct4 consensus motif include many known
pluripotency related genes like Nanog, DppaSa and Chdl1 (Gaspar-
Maia et al., 2009; Yu et al., 2007) while the pGCAT sites seem to
regulate developmentally important genes (e.g. Id3, Hoxc5, Jmjd6).
Supplementary Datasets 1 and 2 contain lists of target genes of Oct4
binding peaks that contain either the Oct4 consensus motif or the
pGCAT motif.
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Identification of Context-Dependent Motifs
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Fig. 3. Context-dependent motifs of Tcf3 found when contrasting sequences
bound by Tcf3 and Sox2 against those only bound by Tcf3. (A) The Sox2
consensus motif found enriched in the sequences bound by both Tcf3 and
Sox2. (B) The motif found in sequences bound by Tcf3 but not Sox2.
Corresponding positions between (A) and (B) with different nucleotide
distributions are indicated (boxed and circled).

3.4 Differences in motifs for HMG domains

Sox2 and Tcf3 both have HMG-box domains that bind similar
DNA patterns (Kormish ez al., 2010). While both TFs are highly
expressed in ESCs, Sox2 mostly activates its targets and Tcf3 tends
to repress its targets (Cole et al., 2008). Furthermore, many Sox2
and Tcf3 binding sites overlap, which suggests that the two TFs may
compete for the same binding sites given their opposite regulatory
roles. Approximately half of all Sox2 sites are bound by Tcf3 while
about 2/3 of Tcf3 sites are bound by Sox2 in the Marson study. To
investigate whether subtle signals might affect the targeting of the
two proteins, we contrasted different subsets of sequences bound
by Sox2 and/or Tcf3. Interestingly, we found that Sox2 consistently
binds its consensus motif, ACAA[A/T]G (Maruyama et al., 2005), in
every subset of sequences bound by Sox2 regardless of whether Tcf3
binds the sequences (Supplementary Fig. 2a—c). Tcf3, on the other
hand, has different binding patterns depending on whether Sox2 also
binds. The context-dependent motifs of Tcf3 can easily be found
by contrasting two bound datasets. Figure 3 shows motifs found by
CMF when contrasting Tcf3 bound sequences with and without Sox2
binding: we found the consensus Sox2 motif (Fig. 3a) in sequences
bound by both TFs (ST-cobound), while sequences bound solely by
Tcf3 (Tef3-only) had a slightly different motif, TCAAAG (Fig. 3b),
which we call the Tcef3-specific motif. This result is consistent with
the motifs identified by contrasting ST-cobound sequences, Tcf3-
only sequences or all Tcf3 bound sequences against control datasets
(Supplementary Fig. 2c—e). Particularly, the motif found in all Tcf3
bound sequences is a mixture of the Sox2 motif and the Tcf3-
specific motif. The change from an adenine in position 2 in the
Sox2 motif (Fig. 3a) to a thymine in the Tcf3-specific motif (Fig. 3b)
is significantly associated with the cobinding of Sox2: the P-value
for observing such an extreme difference by random partition of
all Tcf3 bound sequences is practically zero (P <5 x 10~8). This
different nucleotide preference may prevent Sox2 binding while still
permitting Tcf3 binding as it may recognize both motifs. Although
this finding has not been experimentally validated, similar results
have been found for Sox4 and Tcfl by Selex (van de Wetering
et al., 1993). Here, one sees that by contrasting subsets of bound
sequences CMF can identify subtle signals with implications to
functional binding. Many pluripotency genes bound by Tcf3 can be
categorized by the context-dependent patterns. For example, Sox2,

cMyec, Utfl and Jarid2 have only the Sox2 motif in their promoters,
while others like K1f2, Nr5a2 and Sall4 have the Tcf3-specific motif.
Supplementary Datasets 3 and 4 provide lists of those targets bound
by Tcf3 with either the Sox2 motif or the Tef3-specific motif.

It should be noted that DME and BioProspector can be used to find
motifs enriched in one of two bound sequence sets by employing one
sequence set as the background in order to find motifs enriched in the
other and that FIRE can handle more than one bound sequence set.
Using these approaches with the Oct4-only seqs and OS-cobound
seqs, DME and BioProspector found motifs resembling the pPGCAT
motif but FIRE did not; for the Sox2 and Tcf3 datasets, FIRE and
DME found the Sox2 and the Tef3-specific motifs but BioProspector
failed to detect either of them.

4 DISCUSSION

CMF yields PWMs that are corrected for false positives and
outperforms PWMs found by other popular motif finders. When
contrasting bound sequence datasets, CMF also mitigates the
dominant signal of the consensus motif, enabling small differences
from the canonical motif to be observed. Using CMF we detected
context-dependent motifs of a few key TFs in ESCs, which
demonstrates a concrete example for the use of large-scale ChIP-seq
data to discover subtle and complex regulatory signals. The context
in this work is defined by combinatorial or competitive binding of
multiple TFs, which is different from the binding context studied in
previous works that refers to the orientation, the location or the
surrounding background nucleotides of a binding site (Beer and
Tavazoie, 2004; Chen and Zhou, 2010; Huang et al., 2004; Nguyen
and D’Haeseleer, 2006; Westholm et al., 2008; Yu et al., 20006).
In future studies, we will develop a more principled approach to
determine how many motifs CMF should output, in addition to the
current use of an upper bound M. We also hope to adapt CMF to
enable the discovery of motifs containing variably separated half-
sites, such as Nrsf which can tolerate gaps that vary as much as 10 bp
(Johnson et al., 2007). Furthermore, CMF does not take into account
the interactions among binding sites in discriminating between S
and S,. Incorporation of more sophisticated statistical models, such
as classification trees and hierarchical mixture modeling (Zhou and
Wong, 2004), in CMF should be helpful for finding interactive motif
combinations and cis-regulatory modules.
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