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olycomb group (PcG) proteins belonging to the

polycomb (Pc) repressive complexes 1 and 2 (PRC1

and PRC2) maintain homeotic gene silencing. In
Drosophila, PRC2 methylates histone H3 on lysine 27,
and this epigenetic mark facilitates recruitment of PRC1.
Mouse PRC2 (mPRC2) has been implicated in X inactivation,
as mPRC2 proteins transiently accumulate on the inactive
X chromosome (Xi) at the onset of X inactivation to methylate
histone H3 lysine 27 (H3-K27). In this study, we demon-
strate that mPRC1 proteins localize to the Xi, and that

Introduction

Polycomb group (PcG) proteins assemble into two biochemically
distinct complexes that are used to achieve developmentally
regulated and tissue specific transcriptional silencing of Hox
genes in flies and mammals (Lund and van Lohuizen, 2004). The
enhancer of zeste 2 (Ezh2)/embryonic ectoderm development
(Eed) complex in mammals and the homologous enhancer of
zeste (E[z])/extra sexcombs complex in flies, also referred to
as Polycomb (Pc) repressive complex 2 (PRC2), exhibit his-
tone methyltransferase activity, methylating histone H3 lysine
27 (H3-K27) and to a lesser extent on lysine 9 (Cao et al.,
2002; Czermin et al., 2002; Kuzmichev et al., 2002; Muller et
al., 2002). The fly Pc protein contains a chromodomain that
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different mPRC1 proteins accumulate on the Xi during
initiation and maintenance of X inactivation in embryonic
cells. The Xi accumulation of mPRCT1 proteins requires Xist
RNA and is not solely regulated by the presence of H3-K27
methylation, as not all cells that exhibit this epigenetic
mark on the Xi show Xi enrichment of mPRC1 proteins.
Our results implicate mPRC1 in X inactivation and suggest
that the regulated assembly of PcG protein complexes on
the Xi contributes to this multistep process.

binds to methylated H3-K27 in vitro (Fischle et al., 2003;
Min et al., 2003), and is a component of Pc repressive complex
1 (PRC1; Lund and van Lohuizen, 2004). In E(z) mutant
embryos PRC1 proteins are not recruited to Hox genes, sug-
gesting that E(z)-mediated histone methylation facilitates the
recruitment of PRC1 (Cao et al., 2002; Czermin et al., 2002;
Muller et al., 2002). PRC1 can mediate silencing of target genes
by interfering with SWI/SNF chromatin remodeling machinery,
blocking transcriptional initiation, or recruiting additional
silencing activities (Shao et al., 1999; Francis et al., 2001;
Dellino et al., 2004; King et al., 2002; Lavigne et al., 2004). In
addition to Pc, Drosophila PRC1 contains four other PcG
proteins, polyhomeotic (Ph), posterior sex combs (Psc), sex
combs on midleg (Scm), and sex combs extra/dRING (Shao et
al., 1999), and each of these has several mammalian homo-
logues (Table I).

In addition to Hox gene silencing, PcG proteins belonging
to mouse PRC2 (mPRC2) are implicated in X inactivation
(Wang et al., 2001; Mak et al., 2002; Erhardt et al., 2003;
Plath et al., 2003; Silva et al., 2003). A large, noncoding
RNA, encoded by the X-linked Xist gene, coats the inactive X
chromosome (Xi) to initiate X chromosome silencing (Penny
et al.,, 1996; Marahrens et al., 1997; Wutz and Jaenisch,
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2000). Two mPRC2 proteins, Eed and Ezh2, are transiently
recruited to the Xi immediately after the initial chromosome
coating by Xist RNA (Erhardt et al., 2003; Plath et al., 2003;
Silva et al., 2003). The histone methyltransferase Ezh2 is re-
sponsible for the concomitant enrichment of the histone H3
tri-methyl lysine 27 (H3-3mK27) on the Xi (Erhardt et al.,
2003). During later stages of development and in adult tis-
sues, when the Xi is stably maintained, H3-3mK27 continues
to be enriched on the Xi in many differentiated cell types
(Gilbert et al., 2003). This enrichment is dependent on Xist
RNA and Ezh2, although the latter no longer exhibits consti-
tutive enrichment on the Xi (Plath et al., 2005).

The enrichment of subunits of mPRC2 and of H3-
3mK27 on the Xi suggests that mouse PRC1 (mPRC1) also
plays a role in X inactivation. As in the case of silenced Hox
genes, Ezh2-mediated H3-K27 methylation could facilitate
the recruitment mPRC1 to the Xi. However, mPRCI1 proteins
have not been detected on the Xi, suggesting that PcG pro-
teins function differently during X inactivation and Hox gene
silencing (Mak et al., 2002; Silva et al., 2003; Cao and
Zhang, 2004). In this study, we have demonstrated mPRCl1
proteins accumulate on the Xi. Chromobox homologue (Cbx)
2, a Pc homologue; B lymphoma Mo-MLYV insertion region 1
(Bmi-1), a Psc homologue; and the Ph homologues Ph-like
(Phc) 1 and Phc2, were enriched on the Xi in a stage-specific
fashion during X inactivation. Phcl accumulated on the Xi
during initiation of X inactivation whereas Cbx2, Bmi-1, and
Phc2 exhibited Xist-dependent Xi enrichment during the
maintenance phase of X inactivation. In addition the combi-
nation of mammalian PRC1 proteins that accumulate on the
Xi displayed cell type specific differences. Finally, mPRC1
components were not enriched in all cells exhibiting enrich-

Table I. The mammalian homologues of the Drosophila PRC1 proteins

ment of H3-3mK27 on the Xi, indicating that the Xi accumu-
lation of PRC1 cannot be regulated solely by the methylation
of H3-K27 on the Xi.

Results

mPRC1 proteins are enriched on the Xi
in somatic cells

To determine whether mPRC1 proteins are enriched on the
Xi, we analyzed the distribution of Bmi-1, Cbx2, Phcl and
Phc2 in transformed mouse embryo fibroblasts (MEFs),
which are tetraploid and contain two Xis. Immunostaining
for these mPRC1 proteins was combined with FISH for Xist
RNA or immunostaining for the histone variant macroH2A
to mark the Xi (Fig. 1, a—d). When tested on MEFs overex-
pressing mPRC1 proteins, the antibody recognizing Phc2
showed some cross-reactivity for Phcl and Phc3, whereas
the other antibodies exhibited specificity and did not recog-
nize closely related homologues (Fig. S1, available at http://
www.jcb.org/cgi/content/full/jcb.200409026/DC1). All four
mPRC1 proteins showed diffuse nuclear staining with exclu-
sion from the nucleolus and pericentric heterochromatin and
a variable number of speckles, and in a subset of cells these
mPRC1 proteins showed Xi enrichment (Table II). Bmi-1
and Cbx2 exhibited Xi enrichment in 12.1% and 13.9% of
cells, a proportion similar to that seen when tagged Bmi-1 or
Cbx2 were expressed in MEFs (Fig. S2 and Table S1, avail-
able at http://www.jcb.org/cgi/content/full/jcb.200409026/
DC1), suggesting that antibody staining accurately reflects
the small proportion of cells with Xi enrichment of these
mPRC1 proteins. Phc2 accumulated on the Xi in 3.4% of
cells when assayed by immunostaining, whereas tagged Phc2

Drosophila proteins Mouse proteins Xi enriched Human proteins Xi enriched
dPRC1 mPRC1 hPRC1
Pc Cbx2/M33 +ab CBX2/HPC1 +¢
Cbx4/Mpc2 —b CBX4/HPC2 +o
Cbx7 ND CBX7 ND
Cbx8 +b CBX8/HPC3 ND
Phe Phc1/Edr1/Mph1/Rae28 +ab PHC1/EDR1/HPH1/RAE28 +¢
Phc2/Edr2/Mph2 +ab PHC2/EDR2/HPH2 +¢
Phc3/Edr3 +b PHC3/EDR3/HPH3 ND
Scm Scmh1 +b SCMH1/SCML3 ND
Seml2° ND SCML2 ND
Seml4- ND SCML4 ND
SCML1 ND
PscP Bmi-1 fab BMI-1 +°
Rnf110/Zfp144/Mel-18 +b RNF110/MEL-18/ZNF144 ND
Znf134/Mblr ND INF134 ND
dRing/Sce (Sex combs extra) Ring1/Ringla +b RING1/RNF1/RINGTA +9
Rnf2/Ring1b +b RNF2 ND

Where applicable, the official name according to the Mouse Genomic or the HUGO Gene Nomenclature Committee is shown in bold.

“Flies contain two Ph homologues, Ph-proximal and Ph-distal.
bFlies encode three Psc homologues, Psc, Su(z)2, and Su(z)2(D).

Scmh and SCMH are likely the bona fide Scm homologues as all three proteins contain a sterile alpha motif and MBT repeats, whereas Scm14/SCML4 and SCML1
each contain a sterile alpha motif homology domain and Scml2/SCML2 has MBT repeats.

+ indicates protein is enriched on the Xi (+° by immunofluorescence, +° using transiently transfected-tagged proteins).

— indicates protein is not defectable enriched on the Xi (—° by immunofluorescence, —® using transiently transfectedtagged proteins).

ND indicates the protein has not been assayed for Xi localization.

JCB « VOLUME 187 « NUMBER 6 « 2004

20z aunr gl uo Jesn [euag/Aleiqr [eaipawold ejon Aq Jpd'Z019291900 L L y¥881/5Z014/9/291/1pd-ajoie/qol/Bio"ssaidn.y/:diy woly papeojumod



Figure 1. Localization of mPRC1 proteins in somatic cells.
(o—c) MEFs were immunostained for Bmi-1, Cbx2, or
Phc2 (second column) in combination with FISH for Xist
RNA to detect the Xi (third column). DAPI delineates the
nucleus (first column), and the merge presents Xist RNA in
green and mPRC1 proteins in red (fourth column). (d)
Transformed MEFs were stained for Phc1 (second column)
and macroH2A (third column), to mark the Xi (Costanzi
and Pehrson, 1998). Nuclei are visualized by DAPI
staining (first column). The merge shows mPh1 in green

merge and macroH2A in red (fourth column).

Bmi-1 Xist RNA merge

Cbx2 Xist RNA

Xist RNA merge

macroH2A

accumulated on the Xi in 27% of cells (Fig. S2 and Table
S1), suggesting that possibility that more cells exhibit Xi en-
richment of Phc2 than is indicated by antibody staining.
Phcl exhibited Xi enrichment in <1% of cells by immuno-
staining and expression of tagged protein, and Phcl unusual
in that in many instances it was detected on only one of the
two Xis (unpublished data). In cells assayed for localization
of macroH2A and Phcl, both proteins exhibited some over-
lapping sites of enrichment at regions other than the Xi. Sim-
ilar results were observed when macroH2A was examined in
combination with other mPRC1 proteins (unpublished data),

suggesting that localization of mPRC1 proteins and this vari-
ant histone may be regulated by related mechanisms. These
data demonstrate that Bmi-1, Cbx2, and Phc2 exhibit Xi lo-
calization in a significant proportion of cells, indicating a
role for mPRCI proteins in X inactivation.

The distribution of mammalian PRC proteins has been ana-
lyzed in a number of female mouse and human cell types, and

Table II. Percentage of cells exhibiting enrichment of PcG proteins or H3-3mK27 on the Xi in different cell types

Cell type Bmi-1/BMI-1 Cbhx2/CBX2 Phc2/PHC2 Phc1/PHC1 H3-3mK27 Eed/EED®
MEF 12.1 13.9 3.4 0.3 95 1
ES, day 5 of differentiation 3.3 1.6 1.0 47.9 100 99
ES, day 10 of differentiation 6.7 19.3 32.1 0 99.5 0
ES + inducible 3.1 4.1 0 27.0 97.5 99
Xist, 24 h TS 99 99 99 69 99.5 99
293¢ 65.2 45.3 42.7 60.9 99.6 1
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The percentages of MEFs with Xi enrichment of mPRC1 proteins and the standard errors are based on counts of 100-400 cells in each of three to nine independent
experiments similar to that shown in Fig. 1. Percentages of cells with mPRC1 Xi enrichment in differentiating ES cells and undifferentiated ES cells ectopically expressing
Xist are taken from Figs. 5 and 6. The percentages of TS and 293 cells with Xi enrichment of PRC1 proteins are based on counts of >75 cells in each of two or more
experiments similar to those displayed in Figs. 2 and 3. H3-3mK27 percentages in all cell types are based on counts of at least 100 cells in two or more experiments.
In all cases, only interphase cells were counted.

9293 cells also exhibited enrichment of CBX4 (65.5%) and RING1 (73.1%).

bProportion of cells with Xi enrichment of the PRC2 protein Eed/EED is based on counts of at least 200 cells in all cell types.

PRC1 PROTEINS ARE INVOLVED IN X INACTIVATION 1027
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Figure 2. mPRC1 protein localization in TS cells. Inmuno-
staining for Eed (second column) and mPRC1 proteins
(third column) in female TS cells. (a-d) DAPI staining (first
column) was used to mark the nuclei and the merge
(fourth column) represents Eed in green and Bmi-1 (a),
Cbx2 (b), Phe2 (c), or Phel (d) protein in red. (e-g) Bmi-1
shows mitotically stable association with the Xi, as enrich-
ment of Bmi-1 can be detected on the Eed-marked Xi in
prophase (e), metaphase (f), and anaphase (g). Phcl,
Phc2, and Cbx2 also exhibit mitotically stable Xi enrich-
ment (unpublished data).

in most instances these proteins accumulate in nuclear struc-
tures termed PcG bodies, and an Xi-like distribution has not
been reported (Alkema et al., 1997; Gunster et al., 1997,
2001; Satijn et al., 1997b; Bardos et al., 2000; Mak et al.,
2002). Mammalian PRC1 proteins exhibit variable expression
in different tissues and cell types, suggesting that PRC1 pro-
teins may not accumulate on the Xi in some mammalian cell
types due to these differences in levels (Otte and Kwaks,
2003; Lund and van Lohuizen, 2004). To determine whether
Xi accumulation of PRC1 proteins occurs in cell types other
than MEFs, we analyzed the distribution of PRC1 proteins in
female mouse trophoblast stem (TS) cells (Fig. 2), and in fe-

JCB « VOLUME 187 « NUMBER 6 « 2004

male human transformed embryonic kidney (293) cells (Fig.
3). TS cells show enrichment of the mPRC?2 proteins Eed and
Ezh2 on the Xist RNA-coated Xi in virtually all cells (Mak et
al., 2002). When TS cells were stained for Eed and mPRC1
proteins, enrichment of Bmi-1, Cbx2, and Phc2 was detected
on the Eed-marked Xi in >98% of cells, whereas Phcl was
enriched on the Eed-marked Xi in 69% of cells (Table II).
Like Eed and Ezh2, both of which accumulate on the Xi in TS
cells throughout interphase and mitosis, Bmi-1, Cbx2, Phcl,
and Phc2 showed mitotically stable association with the Xi in
TS cells (Fig. 2, e-k; unpublished data). Xi enrichment of
mPRC1 proteins was not detected in TS cells in a previous re-
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d DAPI  XISTRNA  H3-3mK27
hPRCH
b DAPI protein  H3-3mK27

BMI-1

CBX2

CBX4

RING1A

PHCA

PHC2

port (Mak et al., 2002), which may be due to differences in
experimental technique or antibodies.

To determine whether human PRC1 (hPRC1) proteins can
be enriched on the Xi, we analyzed the distribution of hPRCI
proteins in 293 cells, which are highly enriched for most PcG
proteins (Otte and Kwaks, 2003). Cells were stained for H3-
3mK?27 to mark the Xi and for the hPRC1 proteins BMI-1,
CBX2, CBX4, really interesting gene 1 (RINGI1), PHCI, or
PHC2 (Fig. 3). These hPRC1 proteins exhibited Xi enrichment
in a variable proportion of cells, ranging from 40 to 75% of cells
(Table II). We did not detect Ringl and Cbx4 expression in
mouse TS cells or MEFs (unpublished data), however these
PRC1 antibodies were generated against human proteins (Satijn
et al.,, 1997a) and may not necessarily efficiently detect the
mouse proteins. Thus, the combination of mammalian PRC1
proteins that accumulates on the Xi appears to be dependent on
cell type and may also be regulated in a species-specific manner.

Figure 3. Immunolocalization of human PRC1 proteins
in 293 cells. (a) 293 cells were stained for H3-3mK27
(third column) in combination with FISH for XIST RNA to
detect the Xi (second column). Nuclei were stained with
DAPI (first column) and merged image (fourth column)
consists of XIST RNA in green and H3-3mK27 in red.
293 cells contain two Xis and virtually all cells showed Xi
accumulation of H3-3mK27 (unpublished data). (b) Immuno-
staining for H3-3mK27 (third column) and hPRC1 proteins
(second column) in 293 cells. DAPI staining (first column)
was used to mark the nuclei and the merge (fourth column)
represents H3-3mK27 in red and hPRC1 proteins in
green. The fraction of cells with an H3-3mK27-marked Xi
that also exhibited Xi enrichment for each mPRC1 protein
assayed is indicated on the right. All percentages are
based on counts of >75 cells.

merge

merge

mPRC2-mediated enrichment of H3-3mK27 on the Xi re-
quires continued coating of the Xi by Xist RNA (Plath et al.,
2005). Here, we tested whether the Xi localization of mPRC1
proteins also depends on Xist RNA, using female MEFs in
which the Xist gene on the Xi is flanked by loxP sites. To de-
lete Xist, cells were infected with adenovirus encoding Cre re-
combinase. Immunostaining for H3-3mK27 combined with
FISH for Xist RNA confirmed that Xist RNA and the Xisz-
dependent Xi enrichment of H3-3mK27 were lost upon Xist
deletion (Fig. 4, a and b). MEFs carrying the conditional Xist al-
lele exhibited enrichment of Bmi-1, Cbx2, and Phc2 on the
Xist RNA-coated Xi in an average of 11.2%, 17.3%, and 3.5%
of cells respectively (Fig. 4 c¢). Upon deletion of Xist, an Xi-
like focal accumulation of these proteins was no longer de-
tected (Fig. 4 c). Thus, the Xi localization of the mPRC1 pro-

PRC1 PROTEINS ARE INVOLVED IN X INACTIVATION
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Figure 4.  Localization of mPRC1 proteins in
cells lacking Xist RNA on the Xi. (a and b)
Detection of Xist RNA (second column) and
H3-3mK27 (third column) in DAPI stained (first
column) MEFs containing a conditional Xist
allele on the Xi. The merge (fourth column)
represents the overlay of H3-3mK27 (red) and
the Xist RNA (green). (a) Most parental Xist+
cells contain two Xis, both of which are char-
acterized by colocalization of Xist RNA and
H3-3mK27. (b) After Cre-mediated deletion of
Xist from the Xi, generating Xist— cells, no
enrichment of H3-3mK27 or Xist RNA is detected
on the Xi. (c) The proportion of cells with Xi or
Xi-like enrichment of Bmi-1, Cbx2, Phc2, and
H3-3mK27. In Xist+ cells the Xi accumulation
of mPRC1 proteins or H3-3mK27 was con-
firmed by overlap with the area marked by
Xist RNA. After addition of Cre, Xist— cells no
longer expressed Xist RNA, and cells were
scored for a pattern of mPRC1 or H3-3mK27
staining that overlapped with the DAPl-intense
Barr body, which delineates the Xi. Percentages
and standard errors are calculated from €
counts of >200 cells from three experiments.

Bmi-1

Xist RNA

H3-3mK27

merge

Xist+

Xist-

M33 mPh2 H3-3mK27

S 100 -
=

S 80
c

2 60
[}

3

5 40
X

< 20
= L

wt A

teins Bmi-1, Cbx2, and Phc2, like the enrichment of H3-
3mK?27, depends on Xist RNA in somatic cells.

To determine whether mPRC1 proteins accumulate on the Xi
during initiation of X inactivation, when Xist is necessary for
silencing, the distribution of Bmi-1, Cbx2, Phcl, and Phc2 was
analyzed in cells that are trapped in the initiation phase of X in-
activation. Ectopic Xist expression in undifferentiated embry-
onic stem (ES) cells results in initiation of X chromosome si-
lencing and Xi enrichment of the mPRC2 proteins Ezh2 and
Eed (Wutz and Jaenisch, 2000; Plath et al., 2003; Kohlmaier et
al., 2004). X inactivation continues to be Xist dependent and
does not progress into the maintenance phase as long as ES
cells remain undifferentiated (Wutz and Jaenisch, 2000; Kohl-
maier et al., 2004). Xist expression was induced in undifferenti-
ated male ES cells, and localization of Eed and Xist RNA or
Eed and mPRC1 proteins before and after 24 h of induction of
Xist expression analyzed (Fig. 5). Uninduced cells did not ex-
hibit Xi-like accumulation of Xist RNA or Eed. Upon induction
Xi accumulation of Eed was detected in nearly 100% of Xist
RNA expressing cells (Fig. 5 a and Fig. S3), confirming that
Eed can be used to mark the Xi in undifferentiated ES cells that
ectopically express Xist.

Although no Xi-like focal accumulation of Phcl was ob-
served in uninduced cells, an average of 27% of cells with an
Eed-labeled Xi showed Xi enrichment for this mPRC1 protein

wt A wt A wt A

after induction, though there was considerable variation be-
tween experiments (Fig. 5 b). Phc2 did not exhibit Xi-like focal
enrichment in uninduced cells, and was not enriched on the
Eed-marked Xi in induced samples (Fig. 5 b). Bmi-1 and Cbx2
accumulated on the Xi in a small proportion of undifferentiated
ES cells that ectopically express Xist and this proportion varied
between experiments (Fig. 5 b). The replicates that exhibited a
larger proportion of cells with Phcl enrichment exhibited a
larger number of cells with Bmi-1 and Cbx2 enrichment (un-
published data), suggesting that there may be a correlation be-
tween the amount or duration of Phcl Xi enrichment and the
recruitment of Bmi-1 and Cbx2 during early stages of X inacti-
vation. These data suggest that Phcl, but not Phc2, acts during
the initiation of X inactivation. Cbx2 and Bmi-1 may be in-
volved in the transition from initiation to maintenance of X in-
activation, as they were detected on the Xi in very few undif-
ferentiated ES cells that ectopically express Xist and exhibited
Xi enrichment more frequently in MEFs.

Xist RNA contains several evolutionarily conserved sequence
elements and the 5'-most of these conserved elements, termed
the A-repeat, is required for Xist silencing function (Wutz et al.,
2002). Although Xist RNA lacking the A-repeat is unable to
initiate silencing, it can coat the chromosome and recruit Ezh2
and Eed (Wutz et al., 2002; Plath et al., 2003; Kohlmaier et al.,
2004). To determine whether Phcl can be recruited by Xist
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Figure 5. Localization of mPRC1 proteins in undiffer-
entiated male ES cells which ectopically express Xist.
(a) Xist expression was induced in undifferentiated male
ES cells for O or 24 h and distribution of Xist RNA and
Eed determined by immuno-FISH. The graph depicts the
percentage of cells with an Xist RNAcoated chromosome
that displayed overlapping accumulation of Eed. Percent-
ages are based from counts of ~100 cells each from
three independent experiments. (b) Graph displaying the
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RNA that lacks the A-repeat, we assayed the distribution of
Phcl in undifferentiated male ES cells carrying an inducible
wild-type or A-repeat mutant Xist cDNA transgene integrated
into the X-linked Hprt locus (Wutz et al., 2002). Transgenic
Xist expression was induced in both lines for 24 h, and immu-
nostaining for Eed or Phcl was performed in combination with
Xist RNA FISH to detect the X chromosome coated by Xist
RNA (Fig. 5 ¢). In cells expressing the wild-type Xist cDNA,
92.9% of cells with an Xist RNA-coated chromosome exhibited
Xi enrichment for Eed, whereas 19.3% of cells containing an
Xist RNA-coated Xi accumulated Phcl on the Xi. The A-repeat
mutant transgenic Xist transcript recruited Eed and Phcl to the
X chromosome in 68.9% of cells and 13.7% of cells, respec-
tively, indicating that this mutant form of Xist is sufficient to
recruit Phcl to the Xi. The percentage of cells with X chromo-
some enrichment was reduced in equal proportions for both
Phcl and Eed, and this reduction may indicate that the A-repeat
is required for efficient localization of these proteins, as has
been suggested for Ezh2 (Kohlmaier et al., 2004). As the X
chromosome coated with A-repeat mutant Xist RNA is not in-
activated (Wutz et al., 2002), these results indicate that Phc1 re-
cruitment is not sufficient to mediate transcriptional silencing.

Xi association of mMPRC1 proteins alters
during differentiation of ES cells

Next we analyzed whether there is a dynamic alteration in the
combination of mPRCI1 proteins that accumulate on the Xi
when cells progress from the initiation to the maintenance stage
of X inactivation, using differentiating female ES cells, which
initiate X inactivation shortly after they are induced to differen-
tiate and stably maintain the Xi after differentiation is com-
plete. The proportion of cells that exhibited accumulation of
mPRCI1 proteins on the Xist RNA-coated Xi was assayed over
a time course of ES cell differentiation (Fig. 6 and Fig. S4,
available at http://www.jcb.org/cgi/content/full/jcb.200409026/
DC1). The mPRC2 protein Eed accumulates on the Xi during
the earliest stages of X inactivation in differentiating ES cells
(Plath et al., 2003; Silva et al., 2003). We assayed the propor-

proportion of cells that display Phcl, Phc2, Bmi-1, or
Cbx2 enrichment on the Eed-marked Xi, at O and 24 h
after induction. Percentages are calculated from six inde-
pendent experiments in each of which ~100 cells with an
Eed-marked Xi were counted. (c) The graph displays the
fraction of cells that exhibit Xi enrichment of Eed or Phc1
on the Xist RNA-coated chromosome 24 h after induction
of wildtype or Arepeat delete Xist cDNA expression in
undifferentiated ES cells. The proportion of cells in which
Xist expression was induced varied from 30 to 70%, in
four experiments. Percentages are based on counts of
>150 cells that exhibited Xist RNA coating. In all in-
stances error bars indicate standard errors.

24 hours of
induction

tion of cells that exhibited enrichment of Eed on the Xist RNA-
coated Xi to compare the kinetics of the Xi accumulation of
mPRCI proteins with those of mPRC2 proteins. The proportion
of cells with an Eed-enriched Xi peaked at day 5 of differentia-
tion, dropped slightly throughout days 6, 7, and 8, and by days
10 and 11, Eed accumulated on the Xi in only a small subset of
cells (Fig. 6 a). The mPRCI1 proteins Bmi-1, Cbx2, Phcl, and
Phc2 each accumulated on the Xist RNA-coated Xi with differ-
ent kinetics of Xi enrichment from Eed. Phcl was unique
among the mPRC1 proteins in that it displayed kinetics of Xi
accumulation most similar to those of Eed (Fig. 6 b). Like Eed,
Phcl was transiently enriched on the Xi during early time
points of differentiation. In contrast to Eed, which was enriched
on the Xi in all cells with an Xist RNA-coated Xi at day 5 of
differentiation and declined abruptly from 84% to 14% between
days 8 and 10, the fraction of cells with an Xi accumulation of
Phcl decreased gradually from 48% at day 5 to 0% at day 10.
The mPRC1 subunits Bmi-1, Cbx2, and Phc2 exhibited
differentiation-induced Xi enrichment that was delayed when
compared with that of Eed and Phcl (Fig. 6, c—e). At day 5 of
differentiation, when 100% of cells with an Xist RNA-coated
Xi showed Xi localization of Eed, only a small fraction of
cells contained an Xi enriched for Bmi-1, Cbx2, or Phc2
(1-3%). There was a gradual increase in the proportion of cells
that exhibited Xi localization of these three mPRC1 proteins
over time, and at day 8 the proportion of cells with Xi enrich-
ment peaked at 20% for Bmi-1, 24% for Cbx2, and 34% for
Phc2. The proportion of cells with Xi enrichment of Phcl de-
creased between days 5 and 8, as the percentage of cells in
which Bmi-1, Cbx2, or Phc2 accumulate on the Xi increased,
suggesting that a transition in the mPRC1 proteins that local-
ize to the Xi occurs during this time. These results are consis-
tent with a regulated alteration in the mPRC1 proteins that ac-
cumulate on the Xi as cells progress from the initiation to the
maintenance stage of X inactivation. The proportion of cells
with Xi enrichment for Eed did not change dramatically from
day 5 to day 8, when the transition in mPRC1 protein profiles
on the Xi occurs, indicating that the alteration in mPRC1 pro-
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teins that accumulate on the Xi is unlikely to be regulated by
changes in Eed-enrichment on the Xi.

Enrichment of H3-3mK27 is not sufficient

for mMPRC1 accumulation on the Xi

The chromodomain of the Pc class of proteins binds methyl-
ated H3-K27 in vitro and disruption of E(z) activity results loss
of H3-K27 methylation and of PRC1 protein binding to ho-
meotic genes (Cao et al., 2002; Czermin et al., 2002; Muller et
al., 2002; Fischle et al., 2003; Min et al., 2003), suggesting that
H3-K27 methylation is necessary for PRC1 recruitment. To de-
termine whether Xi enrichment of H3-3mK27 was sufficient
for mPRC1 Xi accumulation, we analyzed the proportion of so-
matic cells, ES cells, and TS cells that exhibited Xi localization
of H3-3mK27 and mPRC1 proteins (Table II). Approximately
95% of MEFs were characterized by Xi accumulation of H3-
3mK27, whereas Bmi-1, Cbx2, and Phc2, accumulated on the
Xi in a much smaller subset of these cells. In differentiating fe-
male ES cells, >99% of cells showed Xi enrichment of H3-
3mK27 on the Xist RNA-coated Xi at all time points of differ-
entiation, whereas Bmi-1, Cbx2, Phcl, and Phc2 were enriched
on the Xi in only a subset of those cells. Similarly, in undiffer-
entiated ES cells ectopically expressing Xist RNA, either from
the endogenous locus or from X-linked transgenes, H3-3mK27
was enriched on the Xi in >95% of cells, whereas mPRC1 pro-
teins showed Xi enrichment in a smaller proportion of cells. In
undifferentiated TS cells, H3-3mK27, Bmi-1, Cbx2, and Phc2
accumulated on the Xi in nearly 100% of cells, whereas Phcl
was enriched in a smaller subset of cells. Finally, in 293 cells
H3-3mK27 accumulated on the Xi in virtually 100% of cells,
which hPRCI1 proteins were Xi enriched a subset of cells. In
combination, these results demonstrate that mPRC1 proteins
are not always enriched on the Xi when H3-3mK27 is present,
indicating that Xi enrichment of H3-3mK27 by itself is not suf-
ficient to recruit mPRCI1 proteins. When we costained for
mPRC1 proteins and H3-3mK27 in MEFs or 293 cells, Xi lo-
calization of mPRCI proteins without concomitant Xi enrich-
ment of H3-3mK27 was never detected (unpublished data),
suggesting that H3-3mK27 enrichment may be necessary for
mPRCI1 recruitment to the Xi.

Discussion

In this study, we have demonstrated that PRC1 proteins accu-
mulate on the Xi in MEFs, TS cells, and 293 cells. These cell
types all exhibited Xi enrichment of Cbx2/CBX2, Bmi-1/BMI-
1, and Phc2/PHC2. TS cells also showed Xi enrichment of
Phcl and 293 cells also exhibited Xi accumulation of CBX4,
PHCI1, and Ringl. Thus, different cell types display Xi enrich-
ment of different combinations of mammalian PRC1 proteins.
This may be due to different combinations of mammalian
PRCI proteins that are expressed in each cell type, as there is
considerable tissue-specific variation in expression of mam-
malian PRC1 proteins (Otte and Kwaks, 2003). There was also
cell-type specific variation in the proportion of cells with Xi
enrichment of these proteins, for example Cbx2/CBX2 accu-
mulated on the Xi in ~14% of MEFs, 99% of TS cells, and
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Figure 6. Kinefics of Xi enrichment of mPRC1 proteins in differentiating
ES cells. The proportion of differentiating female ES cells exhibiting Xi
enrichment for Eed (a), Phc1 (b), Bmi-1 (c), Cbx2 (d), and Phc2 (e) were
defermined over an 11 d time course. At each time point the percentage
of Xist RNA-<coated Xis that exhibited enrichment for the PcG protein indicated
was calculated. At day O >100 cells were assayed and Xi enrichment of
Xist or mPRC1 proteins was not detected. At each time point after day 0,
percentages are based on counts of between 100 and 750 nuclei that
exhibited Xist RNA coating of the Xi.

45% of 293 cells. This suggests that Xi recruitment of these
mammalian PRC1 proteins is dynamic, and that the mecha-
nisms that regulate changes in the Xi localization of these pro-
teins may be different in each cell type. Many chromatin mod-
ifications exhibit cell cycle regulation of accumulation on the
Xi (Chadwick and Willard, 2002; Kohlmaier et al., 2004; Plath
et al., 2005), suggesting that the Xi enrichment of mPRC1 pro-
teins may also be cell cycle regulated. Our preliminary results
indicate that the majority MEFs that exhibit Xi enrichment of
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Cbx2, Bmi-1, and Phc2 are in S phase (unpublished data), sug-
gesting that mPRCI1 proteins, like macroH2A and histone H3
lysine 9 and H4 lysine 20 methylation, show cell cycle-regu-
lated enrichment on the Xi. It is possible that the other cell cy-
cle-regulated epigenetic modifications that characterize the Xi
may serve to modulate the Xi accumulation of PRC1 proteins.
It is worth noting that mammalian PRC1 proteins may contrib-
ute to transcriptional silencing on the Xi even in the absence of
their detectable enrichment. The PRC2 protein Eed is neces-
sary for Ezh2-mediated H3-3mK27 accumulation on the Xi
(Erhardt et al., 2003; Silva et al., 2003), however Eed/EED is
not enriched on the Xi in a substantial fraction of MEFs or 293
cells (Table II), despite the Xi enrichment of H3-3mK27 in
virtually all cells.

Different subsets of PRC1 proteins accumulated on the
Xi in a different proportion of cells in each cell type. For ex-
ample, Bmi-1, Cbx2, and Phc2 showed Xi enrichment in virtu-
ally all TS cells, whereas Phcl accumulated on the Xi in 69%
of TS cells. In contrast, BMI-1 and PHC1 were enriched on
the Xi 60-65% of 293 cells and CBX?2 and PHC2 accumulated
on the Xi in ~45% of these cells. These data are inconsistent
with a single complex containing these PRC1 proteins assem-
bling on the Xi in all cells, and instead suggest that the compo-
sition of PRC1 complexes that accumulate on the Xi are sub-
ject to regulation, perhaps during the cell cycle or in response
to additional epigenetic modifications on the Xi. Complexes
consisting of different subsets of mammalian PRC1 proteins
have been isolated in different cell types (Hashimoto et al.,
1998; Levine et al., 2002; Wang et al., 2004), indicating that
different PRC1 complexes can assemble and suggesting that it
is possible that the composition of PRC1 complexes may be
dynamic within cells.

When X inactivation is triggered in differentiating ES
cells, Xist RNA is required for the Xi enrichment of mPRC1
proteins. Xist RNA is also necessary for Xi accumulation of
Ezh2 and the resulting enrichment in H3-3mK27 (Plath et al.,
2003; Silva et al., 2003). Xist RNA is required for Xi enrich-
ment of mPRCI1 proteins and for Ezh2-mediated accumulation
of H3-3mK27 on the Xi in MEFs (Plath et al., 2005). In flies
PRCI1 recruitment to Hox genes is dependent on E(z) methyl-
transferase activity (Cao et al., 2002; Czermin et al., 2002;
Muller et al., 2002), suggesting that the loss of mPRC1 Xi ac-
cumulation that is observed upon deletion of Xist is due to the
loss of Ezh2-mediated H3-K27 methylation on the Xi. There-
fore, these results are most consistent with a model in which
Xist RNA recruits Ezh-2, which methylates H3-K27 and facili-
tates binding of mPRC1 proteins. mPRCI1 proteins could then
contribute to transcriptional silencing of the Xi by interfering
with SWI/SNF chromatin remodeling machinery, blocking
transcriptional initiation, mediating additional posttranslational
histone modifications, or recruiting additional silencing activi-
ties (Shao et al., 1999; Francis et al., 2001; Poux et al., 2001;
King et al., 2002; Dellino et al., 2004; Lavigne et al., 2004,
Wang et al., 2004). However, we cannot rule out the possibility
that Xist RNA also contributes more directly to recruitment of
mPRCI1 proteins, as the Ph proteins in flies, worms, and mam-
mals contain a conserved RNA binding domain which is essen-

tial for homeotic gene silencing mediated by the Ph homologue
SOP-2 in C. elegans (Zhang et al., 2004). Although enrichment
of H3-3mK27 may be necessary for enrichment of mPRCl1
proteins on the Xi, it is not sufficient, as H3-3mK27 was en-
riched on the Xi in almost all cells in each cell type examined,
whereas mammalian PRCI1 proteins were generally Xi en-
riched in a subset of cells.

mPRC1 proteins exhibited different patterns of enrich-
ment on the Xi at different stages of X inactivation. During
initiation of X inactivation in differentiating female ES cells
and in undifferentiated ES cells ectopically expressing Xisz,
Phcl accumulates on the Xi. In contrast, Bmi-1, Cbx2, and
Phc2 exhibit Xi enrichment in a significant proportion of
MEFs and of differentiating female ES cells at later stages of
differentiation, both of which are in the maintenance stage
of X inactivation. The proportion of differentiating ES cells
exhibiting Xi enrichment of Phcl declined as the proportion
of cells exhibiting X-enrichment of Bmi-1, Cbx2, or Phc2 in-
creased, suggesting that there may be an ordered series in the
changes of mPRC1 proteins that accumulate on the Xi as
cells progress from initiation to maintenance of X inactiva-
tion. As Phcl, Phc2, Bmi-1, and Cbx2 can exhibit simulta-
neous enrichment on the Xi in TS cells, the changes in Xi ac-
cumulation patterns of these four mPRC1 proteins that occur
during the transition from initiation to maintenance stages of
X inactivation in ES cells cannot be solely due to mutually
exclusive recruitment of these proteins to the Xi. Overall lev-
els of Phc2, Bmi-1, and Cbx2 appeared to be comparable in
undifferentiated ES cells and differentiating ES cells when
judged by intensity of immunostaining (unpublished data),
suggesting that the increase in the proportion of cells with Xi
enrichment of these mPRCI1 proteins in differentiating ES
cells is due to the stage-specific Xi enrichment of these pro-
teins. Elucidating the molecular mechanisms that regulate the
developmentally modulated accumulation of mPRCI pro-
teins on the Xi will be important in understanding how com-
binations of mPRCI1 proteins are used to establish and main-
tain tissue-specific transcriptional silencing of the Xi, and
Hox and other genes in mammals.

Our results implicate Phcl in initiation of X inactivation.
However, Xi accumulation of Phcl during initiation of X inacti-
vation in ES cells is not sufficient to initiate silencing, as Xist
RNA lacking the A-repeat can recruit Phcl, but does not trigger
silencing. Targeted disruption of Phcl results in perinatal lethal-
ity in both sexes (Takihara et al., 1997). As disruption of X inac-
tivation causes female-specific early embryonic death (Marah-
rens et al., 1997), the Phcl mutant phenotype suggests that
initiation of X inactivation is not affected in the absence of Phcl.
It is possible that Phc2 or Phc3 can substitute for Phcl in these
mutant animals. Alternatively, maternal stores of Phcl may be
present in sufficient quantities to mask defects in the initiation of
X inactivation, as has been suggested for Eed (Plath et al., 2003;
Silva et al., 2003). In contrast to Phcl, Bmi-1, Cbx2, and Phc2
exhibited Xi accumulation more consistent with a role in mainte-
nance of X inactivation. Deletion of the Xist gene, which results
in loss of Xi enrichment of Bmi-1, Cbx2, and Phc2, results in a
slight degree of reactivation of X-linked genes, and levels of re-
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activation can be increased if cells are simultaneously treated
with DNA demethylating agents and histone deacetylase inhibi-
tors (Csankovszki et al., 2001). Thus, Bmi-1, Cbx2, and Phc2
may be among the redundant factors that contribute to stable X
chromosome silencing in somatic cells.

Materials and methods

Cell culture, ES cell differentiation, and transfections

MEFs and 293 cells were cultured using standard conditions and grown on
glass coverslips for analysis. MEFs carrying a conditional Xist allele on the
Xi (Csankovszki et al., 2001) were infected with Cre-expressing adenovirus
(Anton and Graham, 1995), as described previously (Plath et al., 2005).
Female ES cells, male ES cells with a fetracycline-inducible endogenous Xist
gene, male fetracycline-inducible Xist cDNA transgenic ES cells (Wutz et al.,
2002), and TS cells were cultured under standard conditions. To generate
tetracycline-inducible male ES cells the reverse tefracycline-controlled trans-
activator was targeted into the Rosa 26 locus in feederfree E14 ES cells
(Wutz and Jaenisch, 2000). The tetracycline responsive promoter was sub-
sequently introduced into the Xist promoter region by homologous recombi-
nation. Xist expression from the endogenous locus or X-linked cDNA frans-
genes was induced in undifferentiated male ES cells by the addition of 1
ng/ml doxycycline to cells grown on gelatinized glass coverslips for 24 h
before fixation. Differentiation of ES cells was achieved by embryoid body
formation (Panning and Jaenisch, 1996).

Constructs

For targeting of the tetracycline-inducible promoter to the endogenous Xist
gene, a construct was generated containing ~3 kb of sequence, from —4 to
—1 kb relative to the P1 Xist transcriptional start site, and the first 3 kb of the
Xist transcribed sequence in the vector pPGEM-4Z (provided by S. Mlynar-
czykEvans and K. Worringer, UCSF). A hygromycinthymidine kinase cassette
followed by a tetracycline responsive element from the vector pTRE-d2EGFP
(CLONTECH Laboratories, Inc.) was inserted between the homology arms.

Immunostaining and FISH

H3-3mK27 was detected using rabbit (Plath et al., 2003), mouse mono-
clonal (ABCAM), or chicken antisera. Chicken antibodies against H3-
3mK27 peptides were generated, purified, and assayed for specificity as
described previously (Plath et al., 2003). MacroH2A was detected using
a human autoimmune serum. PcG proteins were detected using mouse
mAb to Eed, and rabbit pAbs to mouse Phcl and Cbx2 and human
PHC2, BMI-1, CBX4, and Ringl (Gunster et al., 1997; Satijn et al.,
1997a,b; Sewalt et al., 1998).

For analysis by immunostaining and FISH cells were washed in
PBS, and fixed for 10 min on ice in 1X PBS containing 4% PFA solution.
Cells were then permeabilized by incubation for 5 min at RT with 1x PBS
containing 0.5% Triton X-100, and stored in 1x PBS with 0.2% Tween
20. For immunostaining, cells were incubated for 30 min in blocking
buffer (5% goat serum, 0.2% fish skin gelatin, 0.2% Tween in 1Xx PBS).
Primary antibody incubations were performed for 2 h at RT in blocking so-
lution, cells were washed in 1Xx PBS containing 0.2% Tween-20 (PBS/
Tween), and incubated with FITC or Texas red anti-rabbit or anti-mouse
antibodies or biotinylated anti-chicken antibodies (Vector Laboratories) in
blocking buffer. The biotinylated chicken antibodies were detected with
FITC or Texas red avidin DCS (Vector Laboratories) in blocking buffer.
Cells were then washed with PBS/Tween, stained with DAPI, and mounted
in Vectashield (Vector Laboratories). When FISH followed immunostain-
ing, immunostaining was performed as described above with tRNA (Invi-
trogen) and RNase inhibitors (Promega) in the blocking buffer. After immu-
nostaining cells were fixed with 4% PFA solution and Xist RNA FISH
performed as described previously (Plath et al., 2003).

All images were gathered at RT on a epifluorescence microscope
(model Eclipse E80O; Nikon) using a100X oil (Plan Apo, 1.40 N/A) or a
60x oil (Plan Apo, 1.40 N/A) immersion lens. Images were acquired
with a Princefon Instruments RTE/CCD-1317-K/S camera using Openlab
2.2 acquisition software. Images were optimized globally for contrast and
brightness and assembled into figures using Adobe Photoshop 6.1.0.

Online supplemental material

Fig. S1 shows the specificity of Cbx2, CBX4, Phc1, PHC2, BMI-1, and
Ringl antisera. Fig. S2 shows localization of transiently expressed,
tagged mPRC1 proteins. Fig. S3 shows localization of Eed in ES cells ec-
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topically expressing Xist. Fig. S4 shows localization of mPRC1 proteins in
differentiating ES cells. Table S1 illustrates localization of mPRC1 proteins
in MEFs. Online supplemental material is available at http://www.jcb.

org/cgi/content/full /jcb.200409026,/DC1.
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